TY - JOUR
T1 - Temperature-dependent current-voltage characteristics of Al-doped MgxZn1-xO/AlGaN n-p junction diodes
AU - Hsueh, Kuang Po
AU - Cheng, Po Wei
AU - Lin, Wen Yen
AU - Chiu, Hsien Chin
AU - Wang, Hsiang Chun
AU - Sheu, Jinn Kong
AU - Yeh, Yu Hsiang
N1 - Publisher Copyright:
© 2014 The Electrochemical Society. All rights reserved.
PY - 2014
Y1 - 2014
N2 - This study investigated the temperature dependence of the current-voltage (I-V) characteristics of Al-doped MgxZn1-xO/p-AlGaN junction diodes. The n-type Al-doped MgxZn1-xO (AMZO) films were deposited on p-AlGaN using a radio-frequency (rf) magnetron sputtering system followed by annealing at 700, 800, and 900°C in a nitrogen ambient for 60 s. The n-AMZO/p-AlGaN diode at a substrate temperature of 25°C showed the lowest leakage current in reverse bias. The n-AMZO/p-AlGaN diode with an AMZO annealed at 900°C demonstrated the lowest reverse leakage current. The temperature sensitivity coefficients of the I-V characterizations were obtained at different substrate temperatures (25, 50, 75 100, and 125°C), providing extracted values of 6.4, 7.6, and 5.6 mV/°C in forward bias and -20, 5.6, and 0.8 mV/°C in reverse bias for the AMZO films annealed at 700, 800, and 900°C, respectively. The n-AMZO/p-AlGaN junction diode fabricated with AMZO annealed at 900°C demonstrated the lowest temperature dependence. In addition, the light emission was derived from the forward-biased junction, and near-ultraviolet light emission was evident at all of the p-n diodes. Based on these findings, the n-AMZO/p-AlGaN diodes are suitable for GaN-based heterojunction bipolar transistors (HBTs) and near-ultraviolet light-emitting diodes (LEDs).
AB - This study investigated the temperature dependence of the current-voltage (I-V) characteristics of Al-doped MgxZn1-xO/p-AlGaN junction diodes. The n-type Al-doped MgxZn1-xO (AMZO) films were deposited on p-AlGaN using a radio-frequency (rf) magnetron sputtering system followed by annealing at 700, 800, and 900°C in a nitrogen ambient for 60 s. The n-AMZO/p-AlGaN diode at a substrate temperature of 25°C showed the lowest leakage current in reverse bias. The n-AMZO/p-AlGaN diode with an AMZO annealed at 900°C demonstrated the lowest reverse leakage current. The temperature sensitivity coefficients of the I-V characterizations were obtained at different substrate temperatures (25, 50, 75 100, and 125°C), providing extracted values of 6.4, 7.6, and 5.6 mV/°C in forward bias and -20, 5.6, and 0.8 mV/°C in reverse bias for the AMZO films annealed at 700, 800, and 900°C, respectively. The n-AMZO/p-AlGaN junction diode fabricated with AMZO annealed at 900°C demonstrated the lowest temperature dependence. In addition, the light emission was derived from the forward-biased junction, and near-ultraviolet light emission was evident at all of the p-n diodes. Based on these findings, the n-AMZO/p-AlGaN diodes are suitable for GaN-based heterojunction bipolar transistors (HBTs) and near-ultraviolet light-emitting diodes (LEDs).
UR - http://www.scopus.com/inward/record.url?scp=84990891501&partnerID=8YFLogxK
U2 - 10.1149/2.026404jss
DO - 10.1149/2.026404jss
M3 - 文章
AN - SCOPUS:84990891501
SN - 2162-8769
VL - 3
SP - Q65-Q68
JO - ECS Journal of Solid State Science and Technology
JF - ECS Journal of Solid State Science and Technology
IS - 4
ER -