Abstract
This study aimed to examine the relationship between temporal and spatial expression patterns of Fos protein in the spinal dorsal horn neurons and thermal hyperalgesia behaviors in rats with chronic constriction injury (CCI) to the sciatic nerve. Our results demonstrated that Fos protein expression in the spinal dorsal horn neurons at L5 segment ipsilateral and contralateral to CCI of the sciatic nerve was significantly greater than in sham rats from days 10 to 30 postoperatively (PO 10d to 30d), and was concentrated on the injury (ipsilateral) side. Unlike the short-lived expression after tissue inflammation, laminae I to VI (especially laminae III/IV) displayed a persistent greater number of Fos-like immunoreactive (Fos-LI) neurons for at least 30 days after CCI of the sciatic nerve. After the increase in laminae III/IV, Fos-LI neurons tended to gradually increase in laminae I/II and V/VI at L5 segment from PO 2d to 30d, which were correlated with the heat hyperalgesia (48°C) behaviors measured by paw withdrawal latency in CCI rats but not in sham rats. Interestingly, a persistent increase of Fos-LI neurons in laminae I to VI at L5 segment of the ipsilateral and contralateral sides and at the L1 segment that was out of the normal central terminations of the sciatic nerve suggested the probable presence of territorial and extra-territorial central sensitization or inadequate central nervous system (CNS) adaptive mechanisms. These findings may partly explain why abnormal pain sensations are sometimes distributed in a pattern that does not coincide with the territories of nerves or with the posterior roots of the peripheral nerve after injury.
Original language | English |
---|---|
Pages (from-to) | 177-187 |
Number of pages | 11 |
Journal | Brain Research |
Volume | 1004 |
Issue number | 1-2 |
DOIs | |
State | Published - 09 04 2004 |
Keywords
- Chronic constriction nerve injury
- Extra-territorial central sensitization
- Fos protein
- Hyperalgesia
- Neuropathic pain
- Pain modulation: anatomy and physiology