TET1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator

Ya Ping Tsai, Hsiao Fan Chen, Sung Yuan Chen, Wei Chung Cheng, Hsei Wei Wang, Zih Jie Shen, Chunxiao Song, Shu Chun Teng, Chuan He, Kou Juey Wu

Research output: Contribution to journalJournal Article peer-review

125 Scopus citations

Abstract

BACKGROUND: Hypoxia induces the epithelial-mesenchymal transition, EMT, to promote cancer metastasis. In addition to transcriptional regulation mediated by hypoxia-inducible factors, HIFs, other epigenetic mechanisms of gene regulation, such as histone modifications and DNA methylation, are utilized under hypoxia. However, whether DNA demethylation mediated by TET1, a DNA dioxygenase converting 5-methylcytosine, 5mC, into 5-hydroxymethylcytosine, 5hmC, plays a role in hypoxia-induced EMT is largely unknown.

RESULTS: We show that TET1 regulates hypoxia-responsive gene expression. Hypoxia/HIF-2α regulates the expression of TET1. Knockdown of TET1 mitigates hypoxia-induced EMT. RNA sequencing and 5hmC sequencing identified the set of TET1-regulated genes. Cholesterol metabolic process genes are among the genes that showed high prevalence and statistical significance. We characterize one of the genes, INSIG1 (insulin induced gene 1), to confirm its expression and the 5hmC levels in its promoter. Knockdown of INSIG1 also mitigates hypoxia-induced EMT. Finally, TET1 is shown to be a transcriptional co-activator that interacts with HIF-1α and HIF-2α to enhance their transactivation activity independent of its enzymatic activity. TET1 acts as a co-activator to further enhance the expression of INSIG1 together with HIF-2α. We define the domain in HIF-1α that interacts with TET1 and map the domain in TET1 that confers transactivation to a 200 amino acid region that contains a CXXC domain. The TET1 catalytically inactive mutant is capable of rescuing hypoxia-induced EMT in TET1 knockdown cells.

CONCLUSIONS: These findings demonstrate that TET1 serves as a transcription co-activator to regulate hypoxia-responsive gene expression and EMT, in addition to its role in demethylating 5mC.

Original languageEnglish
Article number513
Pages (from-to)513
Number of pages1
JournalGenome Biology
Volume15
Issue number12
DOIs
StatePublished - 2014
Externally publishedYes

Fingerprint

Dive into the research topics of 'TET1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator'. Together they form a unique fingerprint.

Cite this