The Application of Artificial-Intelligence-Assisted Dental Age Assessment in Children with Growth Delay

Te Ju Wu, Chia Ling Tsai, Quan Ze Gao, Yueh Peng Chen, Chang Fu Kuo, Ying Hua Huang*

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

6 Scopus citations

Abstract

Background: This study aimed to reveal the efficacy of the artificial intelligence (AI)-assisted dental age (DA) assessment in identifying the characteristics of growth delay (GD) in children. Methods: The panoramic films matching the inclusion criteria were collected for the AI model training to establish the population-based DA standard. Subsequently, the DA of the validation dataset of the healthy children and the images of the GD children were assessed by both the conventional methods and the AI-assisted standards. The efficacy of all the studied modalities was compared by the paired sample t-test. Results: The AI-assisted standards can provide much more accurate chronological age (CA) predictions with mean errors of less than 0.05 years, while the traditional methods presented overestimated results in both genders. For the GD children, the convolutional neural network (CNN) revealed the delayed DA in GD children of both genders, while the machine learning models presented so only in the GD boys. Conclusion: The AI-assisted DA assessments help overcome the long-standing populational limitation observed in traditional methods. The image feature extraction of the CNN models provided the best efficacy to reveal the nature of delayed DA in GD children of both genders.

Original languageEnglish
Article number1158
JournalJournal of Personalized Medicine
Volume12
Issue number7
DOIs
StatePublished - 07 2022

Bibliographical note

Publisher Copyright:
© 2022 by the authors.

Keywords

  • Demirjian’s method
  • Taiwanese
  • Willems method
  • artificial intelligence
  • chronological age
  • convolutional neural network
  • dental age
  • machine learning
  • population
  • tooth development stage

Fingerprint

Dive into the research topics of 'The Application of Artificial-Intelligence-Assisted Dental Age Assessment in Children with Growth Delay'. Together they form a unique fingerprint.

Cite this