The comparison and interpretation of machine-learning models in post-stroke functional outcome prediction

Shih Chieh Chang, Chan Lin Chu, Chih Kuang Chen, Hsiang Ning Chang, Alice May-Kuen Wong, Yueh Peng Chen*, Yu Cheng Pei*

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

12 Scopus citations

Abstract

Prediction of post-stroke functional outcomes is crucial for allocating medical resources. In this study, a total of 577 patients were enrolled in the Post-Acute Care-Cerebrovascular Disease (PAC-CVD) program, and 77 predictors were collected at admission. The outcome was whether a patient could achieve a Barthel Index (BI) score of>60 upon discharge. Eight machine-learning (ML) methods were applied, and their results were integrated by stacking method. The area under the curve (AUC) of the eight ML models ranged from 0.83 to 0.887, with random forest, stacking, logistic regression, and support vector machine demonstrating superior performance. The feature importance analysis indicated that the initial Berg Balance Test (BBS-I), initial BI (BI-I), and initial Concise Chinese Aphasia Test (CCAT-I) were the top three predictors of BI scores at discharge. The partial dependence plot (PDP) and individual conditional expectation (ICE) plot indicated that the predictors’ ability to predict outcomes was the most pronounced within a specific value range (e.g., BBS-I<40 and BI-I<60). BI at discharge could be predicted by information collected at admission with the aid of various ML models, and the PDP and ICE plots indicated that the predictors could predict outcomes at a certain value range.

Original languageEnglish
Article number1784
JournalDiagnostics
Volume11
Issue number10
DOIs
StatePublished - 10 2021

Bibliographical note

Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Keywords

  • Activities of daily living
  • Functional recovery
  • Machine learning
  • Post-acute care
  • Rehabilitation
  • Stroke

Fingerprint

Dive into the research topics of 'The comparison and interpretation of machine-learning models in post-stroke functional outcome prediction'. Together they form a unique fingerprint.

Cite this