The influence of surface roughness and cementing technique on the microstructure and mechanical strength at the cement-prosthesis interface

Ching Lung Tai, De Mei Lee, Pang Hsing Hsieh*

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review


It was generally considered that a femoral stem with a rough surface was not suitable for cemented fixation in total hip arthroplasty. The long-term follow-up studies on the cemented rough stems clearly revealed a significantly higher loosening and revision rate than those of polished stems. However, from a biomechanics point of view, a rough surface might result in stronger cement-prosthesis bonding because of micro-interlocking between the bone cement and the stem. This contradiction between biomechanical standpoint and clinical observation remains as a problem to be resolved. Thus, this study was designed to evaluate the effect of stem surface roughness and the cement pre-coating process on the bonding strength of the prosthesis-cement interface. A total of 48 Co-Cr rods with three different levels of surface roughness (polished, plasma-treated and bead-coated, 16 in each group) were enrolled in the study. All specimens were cylindrical in shape with lengths of 120 mm and 12 mm diameters. Sixteen specimens in each group were then treated with non-precoated or precoated cement fixation (8 in each group). After fixing the Co-Cr rod, the pushout test was carried out using a MTS testing machine, and the shear strength for each group was compared. An additional microscopic observation of the metal/cement interface was also performed. The results of the pushout test indicated that the shear strength increased with increasing implant surface roughness, regardless of whether or not the stem was treated with the cement precoating process. However, stem precoating did not statistically improve the bonding strength at each level of surface roughness. Microscopic observation of the stem-cement interfaces revealed that the bone cement significantly infiltrated the rough surface in both the precoated and non-precoated groups with stems with various levels of surface roughness. Surface roughness of the femoral stem significantly affected the stem/cement interface, improving shear strength significantly. Stem precoating did not statistically improve the shear strength using the present cementing technique with retrograde high-pressure injection. Although a high surface roughness of the femoral stem appears to be an effective choice to improve implant fixation in cemented THA, the longevity of the prostheses implanted with such a stem can only be determined from long-term clinical trials.

Original languageEnglish
Pages (from-to)419-426
Number of pages8
JournalBiomedical Engineering - Applications, Basis and Communications
Issue number5
StatePublished - 10 2010


  • Bone cement
  • Pushout test
  • Stem loosening
  • Surface roughness
  • Total hip arthroplasty


Dive into the research topics of 'The influence of surface roughness and cementing technique on the microstructure and mechanical strength at the cement-prosthesis interface'. Together they form a unique fingerprint.

Cite this