Abstract
本論文提出k-基底、n-晶格環連接(k-ary n-Cube-Connected-Cycles簡稱
k-ary n-CCC)網路。討論其拓樸特性。k-基底、n-晶格環連接網路是由CCC與k-
ary n-cube兩種架構的特性融合而成.系統中含有N=n.k?茩虒`點、2n.k?荓瓥s接
線,最好的特性在於無論系統多大,系統中每個節點的分支度(degree)都固定為
四,這個特性對於VLSI之實現(implementation)相當有利。雖然其拓樸特性較難
分析,但不論系統擴充多大,都能壓縮至二維平面上,這種難有的特性,使得k-
基底,n-晶格環連接網路頗具實用性。
In this paper, we proposed a new interconnection network, it is the k-ary n- cube-connected-cycles (k-ary n-CCC) interconnection network. The k-ary n-CCC interconnectionnetwork is based on a high radix number system. The system topoloty is formed by thecombination of cube-connected-cycles (CCC) and k-ary n-cube. It consists of N = n.k?? nodes,2n-k" link and is regular of degree 4. The major motivation of k-ary n-CCC interconnectionnetwork is to keep the node degree constant, so that it complies with the basic requirementsof VLSI technology and is easy to expand. In this paper, some of the properties are revealed [6][8][10], consisting of symmetry,fixed node degree, diameter, expandability, ease of layout, regularity, connectivity, andsimple routing algorithm.
In this paper, we proposed a new interconnection network, it is the k-ary n- cube-connected-cycles (k-ary n-CCC) interconnection network. The k-ary n-CCC interconnectionnetwork is based on a high radix number system. The system topoloty is formed by thecombination of cube-connected-cycles (CCC) and k-ary n-cube. It consists of N = n.k?? nodes,2n-k" link and is regular of degree 4. The major motivation of k-ary n-CCC interconnectionnetwork is to keep the node degree constant, so that it complies with the basic requirementsof VLSI technology and is easy to expand. In this paper, some of the properties are revealed [6][8][10], consisting of symmetry,fixed node degree, diameter, expandability, ease of layout, regularity, connectivity, andsimple routing algorithm.
Original language | American English |
---|---|
Pages (from-to) | 91-100 |
Journal | 中正嶺學報 |
Volume | 21 |
Issue number | 2 |
State | Published - 1993 |