Abstract
Objective: Theta burst stimulation, a form of repetitive transcranial magnetic stimulation, can induce lasting changes in corticospinal excitability that are thought to involve long-term potentiation/depression (LTD/LTD)-like effects on cortical synapses. The pattern of delivery of TBS is crucial in determining the direction of change in synaptic efficiency. Previously we explained this by postulating (1) that a single burst of stimulation induces a mixture of excitatory and inhibitory effects and (2) those effects may cascade to produce long-lasting effects. Here we formalise those ideas into a simple mathematical model. Methods: The model is based on a simplified description of the glutamatergic synapse in which post-synaptic Ca2+ entry initiates processes leading to different amount of potentiation and depression of synaptic transmission. The final effect on the synapse results from summation of the two effects. Results: The model using these assumptions can fit reported data. Metaplastic effects of voluntary contraction on the response to TBS can be incorporated by changing time constants in the model. Conclusions: The pattern-dependent after-effects and interactions with voluntary contraction can be successfully modelled by using reasonable assumptions about known cellular mechanisms of plasticity. Significance: The model could provide insight into development of new plasticity induction protocols using TMS.
Original language | English |
---|---|
Pages (from-to) | 1011-1018 |
Number of pages | 8 |
Journal | Clinical Neurophysiology |
Volume | 122 |
Issue number | 5 |
DOIs | |
State | Published - 05 2011 |
Keywords
- Long-term depression
- Long-term potentiation
- Model
- Plasticity
- RTMS
- TBS
- Theta burst stimulation