TY - JOUR
T1 - The tyrosine kinase inhibitor sorafenib sensitizes hepatocellular carcinoma cells to taxol by suppressing the HURP protein
AU - Kuo, Tzu Ching
AU - Lu, Hsing Pang
AU - Chao, Chuck C.K.
PY - 2011/7/15
Y1 - 2011/7/15
N2 - The hepatoma upregulated protein (HURP) represents a putative oncogene that is overexpressed in many human cancers, especially hepatocellular carcinoma (HCC). HURP plays an important role during mitotic spindle formation, a process that is targeted by various anti-cancer drugs like taxol. However, the role of HURP during the establishment of taxol chemoresistance in HCC remains unclear. In this study, we observed that high HURP protein level correlates with taxol resistance in HCC cells. Following HURP knockdown, HCC cells show a more sensitive response to taxol treatment. Notably, sorafenib, a tyrosine kinase inhibitor approved for the treatment of HCC, inhibits HURP expression primarily at the transcriptional level and sensitizes HCC cells to sub-lethal doses of taxol. By using real-time PCR and chromatin immunoprecipitation assays, we observed that the NF-κB family member c-Rel represents a putative transcription factor that activates HURP gene expression. In addition, the inhibitory effect of sorafenib on HURP expression was attributed to a reduced translation and nuclear translocation of c-Rel. Accordingly, downregulation of c-Rel using short-hairpin RNA was shown to reduce HURP protein level and enhance taxol-induced cell death. Taken together, our results indicate that HURP acts as a novel survival protein that protects HCC cells against taxol-induced cell death. In addition, the regulation of HURP gene expression by NF-κB signaling appears to be critical for the response of HCC cells to taxol.
AB - The hepatoma upregulated protein (HURP) represents a putative oncogene that is overexpressed in many human cancers, especially hepatocellular carcinoma (HCC). HURP plays an important role during mitotic spindle formation, a process that is targeted by various anti-cancer drugs like taxol. However, the role of HURP during the establishment of taxol chemoresistance in HCC remains unclear. In this study, we observed that high HURP protein level correlates with taxol resistance in HCC cells. Following HURP knockdown, HCC cells show a more sensitive response to taxol treatment. Notably, sorafenib, a tyrosine kinase inhibitor approved for the treatment of HCC, inhibits HURP expression primarily at the transcriptional level and sensitizes HCC cells to sub-lethal doses of taxol. By using real-time PCR and chromatin immunoprecipitation assays, we observed that the NF-κB family member c-Rel represents a putative transcription factor that activates HURP gene expression. In addition, the inhibitory effect of sorafenib on HURP expression was attributed to a reduced translation and nuclear translocation of c-Rel. Accordingly, downregulation of c-Rel using short-hairpin RNA was shown to reduce HURP protein level and enhance taxol-induced cell death. Taken together, our results indicate that HURP acts as a novel survival protein that protects HCC cells against taxol-induced cell death. In addition, the regulation of HURP gene expression by NF-κB signaling appears to be critical for the response of HCC cells to taxol.
KW - HURP
KW - Hepatocellular carcinoma
KW - Sorafenib
KW - Taxol resistance
UR - http://www.scopus.com/inward/record.url?scp=79958154928&partnerID=8YFLogxK
U2 - 10.1016/j.bcp.2011.04.008
DO - 10.1016/j.bcp.2011.04.008
M3 - 文章
C2 - 21549688
AN - SCOPUS:79958154928
SN - 0006-2952
VL - 82
SP - 184
EP - 194
JO - Biochemical Pharmacology
JF - Biochemical Pharmacology
IS - 2
ER -