The Utilization of Tunable Transducer Elements Formed by the Manipulation of Magnetic Beads with Different Sizes via Optically Induced Dielectrophoresis (ODEP) for High Signal-to-Noise Ratios (SNRs) and Multiplex Fluorescence-Based Biosensing Applications

Chia Ming Yang, Jian Cyun Yu, Po Yu Chu, Chia Hsun Hsieh, Min Hsien Wu*

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

10 Scopus citations

Abstract

Magnetic beads improve biosensing performance by means of their small volume and controllability by magnetic force. In this study, a new technique composed of optically induced dielectrodphoresis (ODEP) manipulation and image processing was used to enhance the signal-to-noise ratio of the fluorescence for stained magnetic beads. According to natural advantages of size-dependent particle isolation by ODEP manipulation, biomarkers in clinical samples can be easily separated by different sizes of magnetic beads with corresponding captured antibodies, and rapidly distinguished by separated location of immunofluorescence. To verify the feasibility of the concept, magnetic beads with three different diameters, including 21.8, 8.7, and 4.2 μm, were easily separated and collected into specific patterns in the defined target zone treated as three dynamic transducer elements to evaluate fluorescence results. In magnetic beads with diameter of 4.2 μm, the lowest signal-to-noise ratio between stained and nonstained magnetic beads was 3.5. With the help of ODEP accumulation and detection threshold setting of 32, the signal-to-noise ratio was increased to 77.4, which makes this method more reliable. With the further optimization of specific antibodies immobilized on different-size magnetic beads in the future, this platform can be a potential candidate for a high-efficiency sensor array in clinical applications.

Original languageEnglish
Article number755
JournalBiosensors
Volume12
Issue number9
DOIs
StatePublished - 09 2022

Bibliographical note

Publisher Copyright:
© 2022 by the authors.

Keywords

  • ODEP
  • detection threshold
  • fluorescence
  • magnetic beads
  • tunable transducer element

Fingerprint

Dive into the research topics of 'The Utilization of Tunable Transducer Elements Formed by the Manipulation of Magnetic Beads with Different Sizes via Optically Induced Dielectrophoresis (ODEP) for High Signal-to-Noise Ratios (SNRs) and Multiplex Fluorescence-Based Biosensing Applications'. Together they form a unique fingerprint.

Cite this