Abstract
In this paper, we consider the system of generalized mixed quasi-variational-like inclusions in Hilbert spaces. We extend the auxiliary principle technique to develop a three-step iterative algorithm for solving the system of generalized mixed quasi-variational-like inclusions. Under the assumptions of the continuity and partially relaxed η-strong monotonicity of set-valued mappings, we establish the convergence for our algorithm. Our algorithm and its convergence results are new, and generalize Ding's predictor-corrector iterative algorithms. Moreover, our results unify some known results in the literature as well.
Original language | English |
---|---|
Pages (from-to) | 1572-1581 |
Number of pages | 10 |
Journal | Computers and Mathematics with Applications |
Volume | 53 |
Issue number | 10 |
DOIs | |
State | Published - 05 2007 |
Externally published | Yes |
Keywords
- Auxiliary principle technique
- Generalized mixed quasi-variational-like inclusion
- Partially relaxed η-strongly monotone mappings
- Set-valued mapping
- Three-step iterative algorithm