Abstract
In previously published studies, intra-arterial (i.a.), but not intravenous (i.v.) delivery of recombinant tissue-type plasminogen activator (rtPA) immobilized on the surface of magnetic nanoparticles induces thrombolysis by magnetic targeting. We asked whether i.v. delivery of protected rtPA in a thermosensitive magnetoliposome (TML@rtPA) may achieve target thrombolysis. PEGylated TML@rtPA was optimized and characterized; controlled release of rtPA was achieved by thermodynamic and magnetic manipulation in vitro. The lysis index of TML@rtPA incubated with blood at 43 °C vs. 37 °C was 53 ± 11% vs. 81 ± 3% in thromboelastograms, suggesting thermosensitive thrombolysis of TML@rtPA. In a rat embolic model with superfusion of 43 °C saline on a focal spot on the iliac artery with clot lodging, release of rtPA equivalent to 20% regular dose from TML@rtPA administered i.a. vs. i.v. significantly restored iliac blood flow 15 vs. 55 min after clot lodging, respectively. TML@rtPA with magnetic guiding and focal hyperthermia may be potentially amendable to target thrombolysis.
Original language | English |
---|---|
Article number | 101992 |
Journal | Nanomedicine: Nanotechnology, Biology, and Medicine |
Volume | 20 |
DOIs | |
State | Published - 08 2019 |
Bibliographical note
Publisher Copyright:© 2019 Elsevier Inc.
Keywords
- Drug delivery
- Liposomes
- Magnetic nanoparticles
- Recombinant tissue-type plasminogen activator
- Thrombolysis