TY - JOUR
T1 - Transforming growth factor-β1 induces matrix metalloproteinase-9 and cell migration in astrocytes
T2 - Roles of ROS-dependent ERK- and JNK-NF-κB pathways
AU - Hsieh, Hsi Lung
AU - Wang, Hui Hsin
AU - Wu, Wen Bin
AU - Chu, Po Ju
AU - Yang, Chuen Mao
PY - 2010/12/6
Y1 - 2010/12/6
N2 - Background: Transforming growth factor-β (TGF-β) and matrix metalloproteinases (MMPs) are the multifunctional factors during diverse physiological and pathological processes including development, wound healing, proliferation, and cancer metastasis. Both TGF-β and MMPs have been shown to play crucial roles in brain pathological changes. Thus, we investigated the molecular mechanisms underlying TGF-β1-induced MMP-9 expression in brain astrocytes.Methods: Rat brain astrocytes (RBA-1) were used. MMP-9 expression was analyzed by gelatin zymography and RT-PCR. The involvement of signaling molecules including MAPKs and NF-κB in the responses was investigated using pharmacological inhibitors and dominant negative mutants, determined by western blot and gene promoter assay. The functional activity of MMP-9 was evaluated by cell migration assay.Results: Here we report that TGF-β1 induces MMP-9 expression and enzymatic activity via a TGF-β receptor-activated reactive oxygen species (ROS)-dependent signaling pathway. ROS production leads to activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun-N-terminal kinase (JNK) and then activation of the NF-κB transcription factor. Activated NF-κB turns on transcription of the MMP-9 gene. The rat MMP-9 promoter, containing a NF-κB cis-binding site, was identified as a crucial domain linking to TGF-β1 action.Conclusions: Collectively, in RBA-1 cells, activation of ERK1/2- and JNK-NF-κB cascades by a ROS-dependent manner is essential for MMP-9 up-regulation/activation and cell migration induced by TGF-β1. These findings indicate a new regulatory pathway of TGF-β1 in regulating expression of MMP-9 in brain astrocytes, which is involved in physiological and pathological tissue remodeling of central nervous system.
AB - Background: Transforming growth factor-β (TGF-β) and matrix metalloproteinases (MMPs) are the multifunctional factors during diverse physiological and pathological processes including development, wound healing, proliferation, and cancer metastasis. Both TGF-β and MMPs have been shown to play crucial roles in brain pathological changes. Thus, we investigated the molecular mechanisms underlying TGF-β1-induced MMP-9 expression in brain astrocytes.Methods: Rat brain astrocytes (RBA-1) were used. MMP-9 expression was analyzed by gelatin zymography and RT-PCR. The involvement of signaling molecules including MAPKs and NF-κB in the responses was investigated using pharmacological inhibitors and dominant negative mutants, determined by western blot and gene promoter assay. The functional activity of MMP-9 was evaluated by cell migration assay.Results: Here we report that TGF-β1 induces MMP-9 expression and enzymatic activity via a TGF-β receptor-activated reactive oxygen species (ROS)-dependent signaling pathway. ROS production leads to activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun-N-terminal kinase (JNK) and then activation of the NF-κB transcription factor. Activated NF-κB turns on transcription of the MMP-9 gene. The rat MMP-9 promoter, containing a NF-κB cis-binding site, was identified as a crucial domain linking to TGF-β1 action.Conclusions: Collectively, in RBA-1 cells, activation of ERK1/2- and JNK-NF-κB cascades by a ROS-dependent manner is essential for MMP-9 up-regulation/activation and cell migration induced by TGF-β1. These findings indicate a new regulatory pathway of TGF-β1 in regulating expression of MMP-9 in brain astrocytes, which is involved in physiological and pathological tissue remodeling of central nervous system.
UR - http://www.scopus.com/inward/record.url?scp=78649716241&partnerID=8YFLogxK
U2 - 10.1186/1742-2094-7-88
DO - 10.1186/1742-2094-7-88
M3 - 文章
C2 - 21134288
AN - SCOPUS:78649716241
SN - 1742-2094
VL - 7
JO - Journal of Neuroinflammation
JF - Journal of Neuroinflammation
M1 - 88
ER -