(TS)2WM: Tumor Segmentation and Tract Statistics for Assessing White Matter Integrity with Applications to Glioblastoma Patients

Liming Zhong, Tengfei Li, Hai Shu, Chao Huang, Jason Michael Johnson, Donald F. Schomer, Ho Ling Liu, Qianjin Feng, Wei Yang, Hongtu Zhu*

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

12 Scopus citations

Abstract

Glioblastoma (GBM) brain tumor is the most aggressive white matter (WM) invasive cerebral primary neoplasm. Due to its inherently heterogeneous appearance and shape, previous studies pursued either the segmentation precision of the tumors or qualitative analysis of the impact of brain tumors on WM integrity with manual delineation of tumors. This paper aims to develop a comprehensive analytical pipeline, called (TS)2WM, to integrate both the superior performance of brain tumor segmentation and the impact of GBM tumors on the WM integrity via tumor segmentation and tract statistics using the diffusion tensor imaging (DTI) technique. The (TS)2WM consists of three components: (i) A dilated densely connected convolutional network (D2C2N) for automatically segment GBM tumors. (ii) A modified structural connectome processing pipeline to characterize the connectivity pattern of WM bundles. (iii) A multivariate analysis to delineate the local and global associations between different DTI-related measurements and clinical variables on both brain tumors and language-related regions of interest. Among those, the proposed D2C2N model achieves competitive tumor segmentation accuracy compared with many state-of-the-art tumor segmentation methods. Significant differences in various DTI-related measurements at the streamline, weighted network, and binary network levels (e.g., diffusion properties along major fiber bundles) were found in tumor-related, language-related, and hand motor-related brain regions in 62 GBM patients as compared to healthy subjects from the Human Connectome Project.

Original languageEnglish
Article number117368
JournalNeuroImage
Volume223
DOIs
StatePublished - 12 2020

Bibliographical note

Publisher Copyright:
© 2020

Keywords

  • Diffusion tensor imaging
  • Glioblastoma
  • Tract statistics
  • Tumor segmentation
  • White matter integrity

Fingerprint

Dive into the research topics of '(TS)2WM: Tumor Segmentation and Tract Statistics for Assessing White Matter Integrity with Applications to Glioblastoma Patients'. Together they form a unique fingerprint.

Cite this