Uncovering latent infections in kidneys: A novel molecular approach for differential Leptospira detection

Li Fang Chou*, Yi Chun Liu, Huang Yu Yang, Ya Chung Tian, Chih Ho Lai, Ming Yang Chang, Cheng Chieh Hung, Tong Hong Wang, Shen Hsing Hsu, Chung Ying Tsai, Pei Yu Hung, Chih Wei Yang*

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

Abstract

Leptospirosis, a re-emerging zoonotic disease caused by Leptospira spp., poses significant global health and veterinary challenges. Long-term colonization of renal tubules by Leptospira in asymptomatic hosts highlights the need for sensitive detection methods. This study evaluates the chronic or latent Leptospira infections in kidneys using a novel molecular approach to examine individual immune responses differences. Digital PCR strategies employing newly developed primer-probe sets targeting the flagellar fliG gene were used to assess the presence of trace Leptospira in infected murine kidneys and urine samples from laboratory-confirmed leptospirosis patients. RNA-based digital PCR detected leptospires in 58 % (targeting lipl32) and 83 % (targeting fliG) of infected kidneys, demonstrating that the digital PCR strategy targeting the fliG gene offers superior sensitivity. Notably, the newly developed fliG-targeting assay detected as low as 20 fg of Leptospira DNA, offering ten-fold greater sensitivity than traditional qPCR for trace detection. This allows for differential detection of Leptospira species and facilitates monitoring of extremely low bacterial loads with greater sensitivity than conventional methods. We also observed regenerating renal tubules with mitosis and elevated cytokine expression in kidneys with transcriptionally active Leptospira during chronic infection. This approach aids in identifying latent infections and offers insights into individual variations. Our research provides a powerful molecular tool for epidemiological studies and public health surveillance, contributing valuable insights into the prevalence and transmission dynamics of this pervasive zoonotic disease.

Original languageEnglish
Article number100327
Pages (from-to)100327
JournalCurrent Research in Microbial Sciences
Volume8
DOIs
StatePublished - 01 2025

Bibliographical note

© 2024 The Author(s).

Keywords

  • Differential detection
  • Digital PCR
  • Latent infection
  • Leptospira spp.
  • Leptospirosis
  • Leptospirosis kidney disease

Fingerprint

Dive into the research topics of 'Uncovering latent infections in kidneys: A novel molecular approach for differential Leptospira detection'. Together they form a unique fingerprint.

Cite this