Urdu Sentiment Analysis with Deep Learning Methods

Lal Khan, Ammar Amjad, Noman Ashraf, Hsien Tsung Chang*, Alexander Gelbukh

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

67 Scopus citations

Abstract

Although over 169 million people in the world are familiar with the Urdu language and a large quantity of Urdu data is being generated on different social websites daily, very few research studies and efforts have been completed to build language resources for the Urdu language and examine user sentiments. The primary objective of this study is twofold: (1) develop a benchmark dataset for resource-deprived Urdu language for sentiment analysis and (2) evaluate various machine and deep learning algorithms for sentiment. To find the best technique, we compare two modes of text representation: count-based, where the text is represented using word n -gram feature vectors and the second one is based on fastText pre-trained word embeddings for Urdu. We consider a set of machine learning classifiers (RF, NB, SVM, AdaBoost, MLP, LR) and deep leaning classifiers (1D-CNN and LSTM) to run the experiments for all the feature types. Our study shows that the combination of word n -gram features with LR outperformed other classifiers for sentiment analysis task, obtaining the highest F1 score of 82.05% using combination of features.

Original languageEnglish
Article number9466841
Pages (from-to)97803-97812
Number of pages10
JournalIEEE Access
Volume9
DOIs
StatePublished - 2021

Bibliographical note

Publisher Copyright:
© 2013 IEEE.

Keywords

  • Urdu sentiment analysis
  • deep learning
  • machine learning
  • natural language processing

Fingerprint

Dive into the research topics of 'Urdu Sentiment Analysis with Deep Learning Methods'. Together they form a unique fingerprint.

Cite this