Xenoestrogen exposure and kidney function in the general population: Results of a community-based study by laboratory tests and questionnaire-based interviewing.

Chao-Ying Chen, CY Sun, HJ Hsu, IW Wu, YC Chen, CC Lee

Research output: Contribution to journalJournal Article peer-review

12 Scopus citations

Abstract

Chronic kidney disease (CKD) is a growing concern worldwide. Exposure to xenoestrogens (XEs), such as phthalates, parabens, and phenols, lead to CKD. However, kidney function and its complex relationship with XEs, lifestyle, and dietary habits are not well understood. In the present cross-sectional community-based cohort study, we enrolled 887 subjects for a questionnaire-based interview and laboratory tests. XE exposure concerning lifestyle/dietary habits were evaluated using questionnaires. Urinary levels of 17XE metabolites were measured in 60 subjects with high exposure risk scores and 60 subjects with low exposure risk scores. Univariate and multivariate linear regression showed that a high exposure score (β ± SE: 4.226 ± 1.830, P = 0.021) was independently negatively associated with eGFR in 887 subjects. Univariate and multivariate linear regression to urinary XEs and urine albumin creatinine excretion ratio (UACR) in 120 subjects indicated that ethylparaben (EP) (β: 1.934, 95% CI: 0.135-3.733, P = 0.035) was significantly associated with increased UACR. Multivariate regression analyses of the CKD subgroup (n = 38), after adjusting for age, showed that higher levels of mono-(2-ethylhexyl) phthalate (MEHP), EP, nonylphenol (NP), and benzophenone-3 (BP-3) were significantly associated with lower estimated glomerular filtration rate (eGFR). Higher urinary levels of MEHP (OR: 3.037, 95% CI: 1.274-7.241) were more likely associated with high exposure scores (>5 points), after adjusting for diabetes, gender, eGFR, age, Na, Ca, albumin, vitamin D, systolic blood pressure (SBP), white blood cell count, total bilirubin, aspartate transaminase, and heart rate. MEHP (β ± SE: 0.033 ± 0.009, P < 0.001) was also significantly positively associated with total exposure scores after applying multivariate linear regression analyses. XE exposure scores obtained from the questionnaires were negatively associated with kidney function. Urinary metabolites of XEs, including EP, NP, BP-3, and MEHP, are potential risk factors for microalbuminuria and decline in kidney function. MEHP seemed to have the strongest correlation with high exposure scores and decline in kidney function.
Original languageAmerican English
Pages (from-to)106585
JournalEnvironment International
Volume155
DOIs
StatePublished - 2021

Fingerprint

Dive into the research topics of 'Xenoestrogen exposure and kidney function in the general population: Results of a community-based study by laboratory tests and questionnaire-based interviewing.'. Together they form a unique fingerprint.

Cite this