TY - JOUR
T1 - YjcC, a c-di-GMP Phosphodiesterase Protein, Regulates the Oxidative Stress Response and Virulence of Klebsiella pneumoniae CG43
AU - Huang, Ching Jou
AU - Wang, Zhe Chong
AU - Huang, Hsi Yuan
AU - Huang, Hsien Da
AU - Peng, Hwei Ling
PY - 2013/7/23
Y1 - 2013/7/23
N2 - This study shows that the expression of yjcC, an in vivo expression (IVE) gene, and the stress response regulatory genes soxR, soxS, and rpoS are paraquat inducible in Klebsiella pneumoniae CG43. The deletion of rpoS or soxRS decreased yjcC expression, implying an RpoS- or SoxRS-dependent control. After paraquat or H2O2 treatment, the deletion of yjcC reduced bacterial survival. These effects could be complemented by introducing the ΔyjcC mutant with the YjcC-expression plasmid pJR1. The recombinant protein containing only the YjcC-EAL domain exhibited phosphodiesterase (PDE) activity; overexpression of yjcC has lower levels of cyclic di-GMP. The yjcC deletion mutant also exhibited increased reactive oxygen species (ROS) formation, oxidation damage, and oxidative stress scavenging activity. In addition, the yjcC deletion reduced capsular polysaccharide production in the bacteria, but increased the LD50 in mice, biofilm formation, and type 3 fimbriae major pilin MrkA production. Finally, a comparative transcriptome analysis showed 34 upregulated and 29 downregulated genes with the increased production of YjcC. The activated gene products include glutaredoxin I, thioredoxin, heat shock proteins, chaperone, and MrkHI, and proteins for energy metabolism (transporters, cell surface structure, and transcriptional regulation). In conclusion, the results of this study suggest that YjcC positively regulates the oxidative stress response and mouse virulence but negatively affects the biofilm formation and type 3 fimbriae expression by altering the c-di-GMP levels after receiving oxidative stress signaling inputs.
AB - This study shows that the expression of yjcC, an in vivo expression (IVE) gene, and the stress response regulatory genes soxR, soxS, and rpoS are paraquat inducible in Klebsiella pneumoniae CG43. The deletion of rpoS or soxRS decreased yjcC expression, implying an RpoS- or SoxRS-dependent control. After paraquat or H2O2 treatment, the deletion of yjcC reduced bacterial survival. These effects could be complemented by introducing the ΔyjcC mutant with the YjcC-expression plasmid pJR1. The recombinant protein containing only the YjcC-EAL domain exhibited phosphodiesterase (PDE) activity; overexpression of yjcC has lower levels of cyclic di-GMP. The yjcC deletion mutant also exhibited increased reactive oxygen species (ROS) formation, oxidation damage, and oxidative stress scavenging activity. In addition, the yjcC deletion reduced capsular polysaccharide production in the bacteria, but increased the LD50 in mice, biofilm formation, and type 3 fimbriae major pilin MrkA production. Finally, a comparative transcriptome analysis showed 34 upregulated and 29 downregulated genes with the increased production of YjcC. The activated gene products include glutaredoxin I, thioredoxin, heat shock proteins, chaperone, and MrkHI, and proteins for energy metabolism (transporters, cell surface structure, and transcriptional regulation). In conclusion, the results of this study suggest that YjcC positively regulates the oxidative stress response and mouse virulence but negatively affects the biofilm formation and type 3 fimbriae expression by altering the c-di-GMP levels after receiving oxidative stress signaling inputs.
UR - https://www.scopus.com/pages/publications/84880730755
U2 - 10.1371/journal.pone.0066740
DO - 10.1371/journal.pone.0066740
M3 - 文章
C2 - 23935824
AN - SCOPUS:84880730755
SN - 1932-6203
VL - 8
JO - PLoS ONE
JF - PLoS ONE
IS - 7
M1 - e66740
ER -