A diagnostic for association in bivariate survival models

Min Chi Chen*, Karen Bandeen-Roche

*此作品的通信作者

研究成果: 期刊稿件文章同行評審

24 引文 斯高帕斯(Scopus)

摘要

We propose exploratory, easily implemented methods for diagnosing the appropriateness of an underlying copula model for bivariate failure time data, allowing censoring in either or both failure times. It is found that the proposed approach effectively distinguishes gamma from positive stable copula models when the sample is moderately large or the association is strong. Data from the Women's Health and Aging Study (WHAS, Guralnik et al., The Womens's Health and Aging Study: Health and Social Characterisitics of Older Women with Disability. National Institute on Aging: Bethesda, Mayland, 1995) are analyzed to demonstrate the proposed diagnostic methodology. The positive stable model gives a better overall fit to these data than the gamma frailty model, but it tends to underestimate association at the later time points. The finding is consistent with recent theory differentiating 'catastrophic' from 'progressive' disability onset in older adults. The proposed methods supply an interpretable quantity for copula diagnosis. We hope that they will usefully inform practitioners as to the reasonableness of their modeling choices.

原文英語
頁(從 - 到)245-264
頁數20
期刊Lifetime Data Analysis
11
發行號2
DOIs
出版狀態已出版 - 06 2005

指紋

深入研究「A diagnostic for association in bivariate survival models」主題。共同形成了獨特的指紋。

引用此