A Graph-Based Soft-Decision Decoding Scheme for Reed-Solomon Codes

Huang Chang Lee, Jyun Han Wu, Chung Hsuan Wang, Yeong Luh Ueng*

*此作品的通信作者

研究成果: 期刊稿件文章同行評審

2 引文 斯高帕斯(Scopus)

摘要

This paper presents a soft decoding scheme based on the binary representations transferred from the parity-check matrices (PCMs) for Reed-Solomon (RS) codes. Referring to the modified binary PCM that has a systematic part and a high-density part corresponding to the least reliable variable nodes (LRVNs) and the most reliable variable nodes (MRVNs), respectively, an informed dynamic scheduling method, called Nested-Polling Residual Belief Propagation (NP-RBP), is applied to the corresponding Tanner graph. As with the popular adaptive BP (ABP) decoding approach, adaptation in a binary PCM based on the reliability of variable nodes is also conducted in the proposed NP-RBP decoding. The NP-RBP enables the LRVNs to receive significant updates and limits the correlation accumulation from the short cycles in the MRVNs. In order to enhance the error-rate performance for long codes, a bit-flipping (BF) technique is conducted in order to correct a selection of the errors in the MRVNs such that the propagation of these errors in the subsequent NP-RBP process can be avoided. The resultant decoder is termed NP-RBP-BF. For short codes such as the (31, 25) and (63, 55) RS codes, NP-RBP is able to provide an error-rate performance close to the maximum-likelihood (ML) bound. A more significant improvement can be observed for long codes. For instance, when the proposed NP-RBP-BF decoding is applied to the (255, 239) RS code, it can provide a gain of about 0.4 dB compared to the ABP decoding and the performance gap to the ML bound can be narrowed to about 0.25 dB at a frame error rate of 2× 10-3.

原文英語
頁(從 - 到)420-433
頁數14
期刊IEEE Journal on Selected Areas in Information Theory
4
DOIs
出版狀態已出版 - 2023

文獻附註

Publisher Copyright:
© 2020 IEEE.

指紋

深入研究「A Graph-Based Soft-Decision Decoding Scheme for Reed-Solomon Codes」主題。共同形成了獨特的指紋。

引用此