A universal lattice

Ren Raw Chen*, Tyler T. Yang

*此作品的通信作者

研究成果: 期刊稿件文章同行評審

11 引文 斯高帕斯(Scopus)

摘要

When valuing derivative contracts with lattice methods, one often needs different lattice structures for different stochastic processes, different parameter values, or even different time intervals to obtain positive probabilities. In view of this stability problem, in this paper, we derive a trinomial lattice structure that can be universally applied to any diffusion process for any set of parameter values at any given time interval. It is particularly useful to the processes that cannot be transformed into constant diffusion. This lattice structure is unique in that it does not require branches to recombine but allows the lattice to freely evolve within the prespecified state space. This is in spirit similar to the implicit finite difference method. We demonstrate that this lattice model is easy to follow and program. The universal lattice is applied to time and state dependent processes that have recently become popular in pricing interest rate derivatives. Numerical examples are provided to demonstrate the mechanism of the model.

原文英語
頁(從 - 到)115-133
頁數19
期刊Review of Derivatives Research
3
發行號2
DOIs
出版狀態已出版 - 1999
對外發佈

指紋

深入研究「A universal lattice」主題。共同形成了獨特的指紋。

引用此