Adaboost for concrete type of keywords annotation

Wei Chao Lin*, Yan Ze Chen, Shu Yuan Chen

*此作品的通信作者

研究成果: 圖書/報告稿件的類型會議稿件同行評審

摘要

The semantic gap presents an arduous task in semantic-based image retrieval investigations. In this paper, the author proposes the AdaBoost learning algorithm for large vocabulary classification. The main finding of this investigation is that using Gentle AdaBoost for image classification produced excellent results in terms of precision and the F-measure. With 190 concrete keywords categorisation, AdaBoost renders more keywords assignable and allows a significant improvement in all accuracy measures: precision, recall and F-measure. An AdaBoost vs. SVMs comparison showed that AdaBoost was an effective classifier using the one-versus-the-rest mode of operation.

原文英語
主出版物標題Proceedings of the International MultiConference of Engineers and Computer Scientists 2018, IMECS 2018
編輯Craig Douglas, Korsunsky Korsunsky, Oscar Castillo, S. I. Ao, David Dagan Feng
發行者Newswood Limited
頁面293-298
頁數6
ISBN(電子)9789881404787
出版狀態已出版 - 2018
對外發佈
事件2018 International MultiConference of Engineers and Computer Scientists, IMECS 2018 - Hong Kong, 香港
持續時間: 14 03 201816 03 2018

出版系列

名字Lecture Notes in Engineering and Computer Science
2233
ISSN(列印)2078-0958

Conference

Conference2018 International MultiConference of Engineers and Computer Scientists, IMECS 2018
國家/地區香港
城市Hong Kong
期間14/03/1816/03/18

文獻附註

Publisher Copyright:
© 2018 Newswood Limited. All rights reserved.

指紋

深入研究「Adaboost for concrete type of keywords annotation」主題。共同形成了獨特的指紋。

引用此