TY - GEN
T1 - Adaptive-weighting schemes for location-based services over heterogeneous wireless networks
AU - Yeh, Sheng Cheng
AU - Hsu, Wu Hsiao
AU - Chiou, Yih Shyh
PY - 2010
Y1 - 2010
N2 - Global positioning systems, widely known as GPSs, provide timing, navigation, and positioning signals to military and civilian users. When a GPS receiver receives satellite signals, the distance between the satellite and the user is first calculated, and then the user's current position is located using the triangulation method. However, there is a possibility that atmospheric conditions, multipath fading, and shadowing effects could have an impact on the satellite signal. As wireless technology has progressed, different user locations and locating systems have been invented, such as the WiFi locating system, which mainly uses received signal strength indication (RSSI) to set up radio maps that provide locations, and RF models to estimate the locations of a moving user. The Zigbee locating system tracks the position of blind nodes, using RF signal strength calculation and known coordinates to estimate the distance between reference points. Using the triangulation method, Zigbee searches for blind node coordinates. This research proposes an adaptive-weighting locating mechanism within wireless heterogeneous networks, which enhances GPS's ability to receive signals in buildings and precision in estimating locations.
AB - Global positioning systems, widely known as GPSs, provide timing, navigation, and positioning signals to military and civilian users. When a GPS receiver receives satellite signals, the distance between the satellite and the user is first calculated, and then the user's current position is located using the triangulation method. However, there is a possibility that atmospheric conditions, multipath fading, and shadowing effects could have an impact on the satellite signal. As wireless technology has progressed, different user locations and locating systems have been invented, such as the WiFi locating system, which mainly uses received signal strength indication (RSSI) to set up radio maps that provide locations, and RF models to estimate the locations of a moving user. The Zigbee locating system tracks the position of blind nodes, using RF signal strength calculation and known coordinates to estimate the distance between reference points. Using the triangulation method, Zigbee searches for blind node coordinates. This research proposes an adaptive-weighting locating mechanism within wireless heterogeneous networks, which enhances GPS's ability to receive signals in buildings and precision in estimating locations.
KW - GPS
KW - Location-based service (LBS)
KW - WiFi
KW - Zigbee
UR - http://www.scopus.com/inward/record.url?scp=77954935268&partnerID=8YFLogxK
U2 - 10.1109/VETECS.2010.5494100
DO - 10.1109/VETECS.2010.5494100
M3 - 会议稿件
AN - SCOPUS:77954935268
SN - 9781424425198
T3 - IEEE Vehicular Technology Conference
BT - 2010 IEEE 71st Vehicular Technology
T2 - 2010 IEEE 71st Vehicular Technology Conference, VTC 2010-Spring
Y2 - 16 May 2010 through 19 May 2010
ER -