TY - JOUR
T1 - Advancing influenza prevention through a one health approach
T2 - A comprehensive analysis
AU - Mukherjee, Riya
AU - K, Gunjan
AU - K, Himanshu
AU - Vidic, Jasmina
AU - Pandey, Ramendra Pati
AU - Chang, Chung Ming
N1 - Publisher Copyright:
© 2024
PY - 2024/5
Y1 - 2024/5
N2 - Background: Influenza represents a global One Health concern, and the utilization of nanoparticle-based vaccines or drugs emerges as a promising solution for its prevention and treatment. Nanoparticles, with their precision in drug distribution, heightened efficacy, and minimized adverse effects, have garnered attention as viable candidates in the fight against influenza. This meta-analysis assesses the effectiveness, safety, and potential applications of nanoparticles, particularly those incorporating natural compounds like curcumin, in influenza prevention and treatment. Methods: A systematic literature search was conducted to gather and examine studies focusing on nanoparticle-based strategies for influenza prevention and treatment, with a specific emphasis on natural compounds such as curcumin. The results obtained were meticulously evaluated. Findings: The results indicate that nanoparticles significantly enhance the effectiveness of influenza prevention. In animal models, nanoparticle interventions exhibit heightened antiviral activity, leading to a substantial reduction in viral load and improved survival rates. The precision of drug administration enabled by nanoparticles facilitates higher drug concentrations at the infection site, maximizing therapeutic benefits. Notably, nanoparticle-based therapies exhibit superior safety profiles compared to traditional antiviral medications, with minimal cytotoxicity and fewer side effects. The combination of phytochemicals with nanoparticles offers a promising avenue for influenza treatment, providing durable therapeutic alternatives with inherent natural qualities that enhance antiviral activity. The synergistic effect of phytochemicals and nanoparticles opens new avenues for the development of antiviral agents. Conclusion: In conclusion, nanoparticles demonstrate both efficacy and safety in the treatment of influenza, acting as potent therapeutic agents due to their targeted drug delivery and enhanced antiviral activities. The inclusion of phytochemicals further amplifies their potential. Future research endeavours should focus on refining nanoparticle formulations, elucidating their mechanisms of action, and exploring innovative combinatorial strategies. The revolutionary impact of nanoparticles in influenza treatment holds the promise of advancing antiviral medicines and ultimately improving patient outcomes.
AB - Background: Influenza represents a global One Health concern, and the utilization of nanoparticle-based vaccines or drugs emerges as a promising solution for its prevention and treatment. Nanoparticles, with their precision in drug distribution, heightened efficacy, and minimized adverse effects, have garnered attention as viable candidates in the fight against influenza. This meta-analysis assesses the effectiveness, safety, and potential applications of nanoparticles, particularly those incorporating natural compounds like curcumin, in influenza prevention and treatment. Methods: A systematic literature search was conducted to gather and examine studies focusing on nanoparticle-based strategies for influenza prevention and treatment, with a specific emphasis on natural compounds such as curcumin. The results obtained were meticulously evaluated. Findings: The results indicate that nanoparticles significantly enhance the effectiveness of influenza prevention. In animal models, nanoparticle interventions exhibit heightened antiviral activity, leading to a substantial reduction in viral load and improved survival rates. The precision of drug administration enabled by nanoparticles facilitates higher drug concentrations at the infection site, maximizing therapeutic benefits. Notably, nanoparticle-based therapies exhibit superior safety profiles compared to traditional antiviral medications, with minimal cytotoxicity and fewer side effects. The combination of phytochemicals with nanoparticles offers a promising avenue for influenza treatment, providing durable therapeutic alternatives with inherent natural qualities that enhance antiviral activity. The synergistic effect of phytochemicals and nanoparticles opens new avenues for the development of antiviral agents. Conclusion: In conclusion, nanoparticles demonstrate both efficacy and safety in the treatment of influenza, acting as potent therapeutic agents due to their targeted drug delivery and enhanced antiviral activities. The inclusion of phytochemicals further amplifies their potential. Future research endeavours should focus on refining nanoparticle formulations, elucidating their mechanisms of action, and exploring innovative combinatorial strategies. The revolutionary impact of nanoparticles in influenza treatment holds the promise of advancing antiviral medicines and ultimately improving patient outcomes.
KW - Influenza
KW - Nanoparticles
KW - One health
KW - Phytochemicals
KW - Prevention
UR - http://www.scopus.com/inward/record.url?scp=85189145992&partnerID=8YFLogxK
U2 - 10.1016/j.hazadv.2024.100419
DO - 10.1016/j.hazadv.2024.100419
M3 - 文章
AN - SCOPUS:85189145992
SN - 2772-4166
VL - 14
JO - Journal of Hazardous Materials Advances
JF - Journal of Hazardous Materials Advances
M1 - 100419
ER -