Altered gut microbiota and its metabolites in hypertension of developmental origins: Exploring differences between fructose and antibiotics exposure

Chien Ning Hsu, Julie Y.H. Chan, Kay L.H. Wu, Hong Ren Yu, Wei Chia Lee, Chih Yao Hou, You Lin Tain*

*此作品的通信作者

研究成果: 期刊稿件文章同行評審

31 引文 斯高帕斯(Scopus)

摘要

Gut microbiota-derived metabolites, in particular short chain fatty acids (SCFAs) and their receptors, are linked to hypertension. Fructose and antibiotics are commonly used worldwide, and they have a negative impact on the gut microbiota. Our previous study revealed that maternal highfructose (HF) diet-induced hypertension in adult offspring is relevant to altered gut microbiome and its metabolites. We, therefore, intended to examine whether minocycline administration during pregnancy and lactation may further affect blood pressure (BP) programmed by maternal HF intake via mediating gut microbiota and SCFAs. Pregnant Sprague-Dawley rats received a normal diet or diet containing 60% fructose throughout pregnancy and lactation periods. Additionally, pregnant dams received minocycline (50 mg/kg/day) via oral gavage or a vehicle during pregnancy and lactation periods. Four groups of male offspring were studied (n = 8 per group): normal diet (ND), high-fructose diet (HF), normal diet + minocycline (NDM), and HF + minocycline (HFM). Male offspring were killed at 12 weeks of age. We observed that the HF diet and minocycline administration, both individually and together, causes the elevation of BP in adult male offspring, while there is no synergistic effect between them. Four groups displayed distinct enterotypes. Minocycline treatment leads to an increase in the F/B ratio, but decreased abundance of genera Lactobacillus, Ruminococcus, and Odoribacter. Additionally, minocycline treatment decreases plasma acetic acid and butyric acid levels. Hypertension programmed by maternal HF diet plus minocycline exposure is related to the increased expression of several SCFA receptors. Moreover, minocycline-and HF-induced hypertension, individually or together, is associated with the aberrant activation of the renin–angiotensin system (RAS). Conclusively, our results provide a new insight into the support of gut microbiota and its metabolite SCAFs in the developmental programming of hypertension and cast new light on the role of RAS in this process, which will help prevent hypertension programmed by maternal high-fructose and antibiotic exposure.

原文英語
文章編號2674
頁(從 - 到)1-16
頁數16
期刊International Journal of Molecular Sciences
22
發行號5
DOIs
出版狀態已出版 - 01 03 2021

文獻附註

Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

指紋

深入研究「Altered gut microbiota and its metabolites in hypertension of developmental origins: Exploring differences between fructose and antibiotics exposure」主題。共同形成了獨特的指紋。

引用此