Analysis of the efficacy of Taiwanese freeze-dried neurotoxic antivenom against Naja kaouthia, Naja siamensis and Ophiophagus hannah through proteomics and animal model approaches

Chien Chun Liu, Chen Hsien You, Po Jung Wang, Jau Song Yu*, Guo Jen Huang, Chien Hsin Liu, Wen Chin Hsieh, Chih Chuan Lin

*此作品的通信作者

研究成果: 期刊稿件文章同行評審

43 引文 斯高帕斯(Scopus)

摘要

In Southeast Asia, envenoming resulting from cobra snakebites is an important public health issue in many regions, and antivenom therapy is the standard treatment for the snakebite. Because these cobras share a close evolutionary history, the amino acid sequences of major venom components in different snakes are very similar. Therefore, either monovalent or polyvalent antivenoms may offer paraspecific protection against envenomation of humans by several different snakes. In Taiwan, a bivalent antivenom—freeze-dried neurotoxic antivenom (FNAV)—against Bungarus multicinctus and Naja atra is available. However, whether this antivenom is also capable of neutralizing the venom of other species of snakes is not known. Here, to expand the clinical application of Taiwanese FNAV, we used an animal model to evaluate the neutralizing ability of FNAV against the venoms of three common snakes in Southeast Asia, including two ‘true’ cobras Naja kaouthia (Thailand) and Naja siamensis (Thailand), and the king cobra Ophiophagus hannah (Indonesia). We further applied mass spectrometry (MS)-based proteomic techniques to characterize venom proteomes and identify FNAV-recognizable antigens in the venoms of these Asian snakes. Neutralization assays in a mouse model showed that FNAV effectively neutralized the lethality of N. kaouthia and N. siamensis venoms, but not O. hannah venom. MS-based venom protein identification results further revealed that FNAV strongly recognized three-finger toxin and phospholipase A2, the major protein components of N. kaouthia and N. siamensis venoms. The characterization of venom proteomes and identification of FNAV-recognizable venom antigens may help researchers to further develop more effective antivenom designed to block the toxicity of dominant toxic proteins, with the ultimate goal of achieving broadly therapeutic effects against these cobra snakebites.

原文英語
文章編號e0006138
期刊PLoS Neglected Tropical Diseases
11
發行號12
DOIs
出版狀態已出版 - 15 12 2017

文獻附註

Publisher Copyright:
© 2017 Liu et al.

指紋

深入研究「Analysis of the efficacy of Taiwanese freeze-dried neurotoxic antivenom against Naja kaouthia, Naja siamensis and Ophiophagus hannah through proteomics and animal model approaches」主題。共同形成了獨特的指紋。

引用此