Bcl-xL augmentation potentially reduces ischemia/reperfusion induced proximal and distal tubular apoptosis and autophagy

Chiang Ting Chien, Song Kuen Shyue, Ming Kuen Lai*

*此作品的通信作者

研究成果: 期刊稿件文章同行評審

127 引文 斯高帕斯(Scopus)

摘要

BACKGROUND. Apoptosis and autophagy may contribute to cell homeostasis in the kidney subjected to ischemia/reperfusion injury via mitochondrial injury. Ischemia/reperfusion induces differential sensitivity between proximal and distal tubules via a dissociated Bcl-xL expression. We hypothesized Bcl-xL augmentation in the proximal and distal tubules may potentially reduce ischemia/reperfusion induced renal dysfunction. METHODS. We augmented Bcl-xL protein expression in the kidney with intrarenal adenoviral bcl-xL gene transfer and evaluated the potential effect of Bcl-xL augmentation on ischemia/reperfusion induced renal oxidative stress, apoptosis, and autophagy in the rat. RESULTS. Intrarenal arterial Adv-bcl-xL administration augmented maximal Bcl-xL protein expression of rat kidney after 7 days of transfection. The primary location of Bcl-xL augmentation was found in proximal and distal tubules, but not in glomeruli. Ischemia/reperfusion increased mitochondrial cytochrome C release, renal O2 level and renal 3-nitrosine and 4-hydroxyneonal accumulation, potentiated tubular apoptosis and autophagy, including increase in microtubule-associated protein 1 light chain 3 (LC-3) and Beclin-1 expression, Bax/Bcl-xL ratio, caspase 3 expression and poly-(ADP-ribose)-polymerase fragments, and subsequent proximal and distal tubular apoptosis/autophagy. However, Adv-bcl-xL administration significantly reduced ischemia/reperfusion enhanced mitochondrial cytochrome C release, O2 production, 3-nitrotyrosine and 4-hydroxynonenal accumulation, Beclin-1 expression, Bax/Bcl-xL ratio, and proximal and distal tubular apoptosis/autophagy, consequently improving renal dysfunction. Further study showed that Bcl-xL augmentation was more efficiently than Bcl-2 augmentation in amelioration of ischemia/reperfusion induced proximal and distal tubular apoptosis and renal dysfunction. CONCLUSIONS. Our results suggest that Adv-bcl-xL gene transfer significantly improves ischemia/reperfusion-induced renal dysfunction via the downregulation of renal tubular apoptosis and autophagy.

原文英語
頁(從 - 到)1183-1190
頁數8
期刊Transplantation
84
發行號9
DOIs
出版狀態已出版 - 11 2007
對外發佈

指紋

深入研究「Bcl-xL augmentation potentially reduces ischemia/reperfusion induced proximal and distal tubular apoptosis and autophagy」主題。共同形成了獨特的指紋。

引用此