TY - JOUR
T1 - Ching-fang-pai-tu-san inhibits the release of influenza virus
AU - Hsieh, Chung Fan
AU - Yen, Hung Rong
AU - Liu, Chih Hao
AU - Lin, Shiming
AU - Horng, Jim Tong
PY - 2012/12/18
Y1 - 2012/12/18
N2 - Ethnopharmacological relevance: Ching-fang-pai-tu-san (CFPTS) is a Chinese herbal decoction that is used as a cure for the common cold, fever, headache, and poor circulation. However, no previous studies have investigated the mode of action of CFPTS against influenza virus infections. To investigate the antiviral mechanism of CFPTS, we examined viral entry, transcription, translation, viral glycoprotein hemagglutinin (HA) transport, and budding of the influenza virus. Materials and methods: The antiviral activity of nontoxic concentrations of CFPTS against influenza virus A/WSN/33 was examined by assaying (neutralization assay) its inhibition of the virus-induced cytopathic effects. The mode of CFPTS action was first examined with a time-of-addition assay of synchronized infections, followed by monitoring HA transport by immunofluorescence microscopy. Viral endocytosis was evaluated with attachment and penetration assays. The inhibition of viral replication was measured by quantitative real-time PCR, immunoblotting, and immunofluorescence microscopy. We also performed assays related to the inhibition of viral entry, such as neuraminidase activity and hemagglutinin activity assays. Results: Based on the inhibition of the virus-induced cytopathic effect in Madin-Darby canine kidney cells, the EC50 of CFPTS was about 1.44±0.22 mg/mL against influenza virus A/WSN/33. CFPTS displayed a broad spectrum of inhibitory activities against different strains of influenza A virus, as well as some enteroviruses. However, this extract proved less effective against clinical oseltamivir-resistant strains and influenza B viruses. CFPTS did not suppress viral RNA or protein synthesis. According to a time-of-addition assay, the antiviral mechanism of CFPTS may involve viral budding or intracellular viral glycoprotein transport. A plaque reduction assay showed that CFPTS reduced both the plaque size and plaque quantity. The intracellular transport of viral glycoprotein hemagglutinin was blocked by CFPTS by immunofluorescence microscopic analysis. Thus, it is possible that the antiviral mechanism of CFPTS might inhibit the assembly of progeny virions and/or their subsequent release. Conclusions: Our results give scientific support to the use of CFPTS in the treatment of influenza virus infections. CFPTS has potential utility in the management of seasonal pandemics of influenza virus infections, like other clinically available drugs.
AB - Ethnopharmacological relevance: Ching-fang-pai-tu-san (CFPTS) is a Chinese herbal decoction that is used as a cure for the common cold, fever, headache, and poor circulation. However, no previous studies have investigated the mode of action of CFPTS against influenza virus infections. To investigate the antiviral mechanism of CFPTS, we examined viral entry, transcription, translation, viral glycoprotein hemagglutinin (HA) transport, and budding of the influenza virus. Materials and methods: The antiviral activity of nontoxic concentrations of CFPTS against influenza virus A/WSN/33 was examined by assaying (neutralization assay) its inhibition of the virus-induced cytopathic effects. The mode of CFPTS action was first examined with a time-of-addition assay of synchronized infections, followed by monitoring HA transport by immunofluorescence microscopy. Viral endocytosis was evaluated with attachment and penetration assays. The inhibition of viral replication was measured by quantitative real-time PCR, immunoblotting, and immunofluorescence microscopy. We also performed assays related to the inhibition of viral entry, such as neuraminidase activity and hemagglutinin activity assays. Results: Based on the inhibition of the virus-induced cytopathic effect in Madin-Darby canine kidney cells, the EC50 of CFPTS was about 1.44±0.22 mg/mL against influenza virus A/WSN/33. CFPTS displayed a broad spectrum of inhibitory activities against different strains of influenza A virus, as well as some enteroviruses. However, this extract proved less effective against clinical oseltamivir-resistant strains and influenza B viruses. CFPTS did not suppress viral RNA or protein synthesis. According to a time-of-addition assay, the antiviral mechanism of CFPTS may involve viral budding or intracellular viral glycoprotein transport. A plaque reduction assay showed that CFPTS reduced both the plaque size and plaque quantity. The intracellular transport of viral glycoprotein hemagglutinin was blocked by CFPTS by immunofluorescence microscopic analysis. Thus, it is possible that the antiviral mechanism of CFPTS might inhibit the assembly of progeny virions and/or their subsequent release. Conclusions: Our results give scientific support to the use of CFPTS in the treatment of influenza virus infections. CFPTS has potential utility in the management of seasonal pandemics of influenza virus infections, like other clinically available drugs.
KW - Atomic force microscopy
KW - Ching-fang-pai-tu-san
KW - Cytopathic effect
KW - Influenza virus
KW - Penetration assay
KW - Viral budding
UR - http://www.scopus.com/inward/record.url?scp=84870293401&partnerID=8YFLogxK
U2 - 10.1016/j.jep.2012.09.035
DO - 10.1016/j.jep.2012.09.035
M3 - 文章
C2 - 23041224
AN - SCOPUS:84870293401
SN - 0378-8741
VL - 144
SP - 533
EP - 544
JO - Journal of Ethnopharmacology
JF - Journal of Ethnopharmacology
IS - 3
ER -