TY - GEN
T1 - Computed extinction limits and flame structures of opposed-jet syngas diffusion flames
AU - Shih, Hsin Yi
AU - Hsu, Jou Rong
PY - 2012
Y1 - 2012
N2 - This paper reports a numerical study on the extinction limits and flame structures of opposed-jet syngas diffusion flames. A narrowband radiation model is coupled to the OPPDIF program, which uses detailed chemical kinetics and thermal and transport properties to enable the study of 1-D counterflow syngas diffusion flames over the entire range of flammable strain rates with flame radiation. The effects of syngas composition, strain rate, ambient pressure, and dilution gases on the flame structures and extinction limits of H2/CO synthetic mixture flames were examined. Results indicate the flame structures and flame extinction are impacted by the composition of syngas mixture significantly. From hydrogen-lean syngas to hydrogen-rich syngas fuels, flame temperature increases with increasing hydrogen content and ambient pressure, but the flame thickness is decreased with ambient pressure and strain rates. Besides, the dilution effects from CO2, N2, and H2O, which may be present in the syngas mixtures, were studied. The flame is thinner and flame temperature is lower when CO2 is the diluents instead of N2. The combustible range of strain rates is extended with increasing hydrogen percentage and ambient pressure, but it is decreased the most with CO2 as the dilution gas due to the dilution effects. Complete flammability limits using strain rates, maximum flame temperature as coordinates can provide a fundamental understanding of syngas combustion and applications.
AB - This paper reports a numerical study on the extinction limits and flame structures of opposed-jet syngas diffusion flames. A narrowband radiation model is coupled to the OPPDIF program, which uses detailed chemical kinetics and thermal and transport properties to enable the study of 1-D counterflow syngas diffusion flames over the entire range of flammable strain rates with flame radiation. The effects of syngas composition, strain rate, ambient pressure, and dilution gases on the flame structures and extinction limits of H2/CO synthetic mixture flames were examined. Results indicate the flame structures and flame extinction are impacted by the composition of syngas mixture significantly. From hydrogen-lean syngas to hydrogen-rich syngas fuels, flame temperature increases with increasing hydrogen content and ambient pressure, but the flame thickness is decreased with ambient pressure and strain rates. Besides, the dilution effects from CO2, N2, and H2O, which may be present in the syngas mixtures, were studied. The flame is thinner and flame temperature is lower when CO2 is the diluents instead of N2. The combustible range of strain rates is extended with increasing hydrogen percentage and ambient pressure, but it is decreased the most with CO2 as the dilution gas due to the dilution effects. Complete flammability limits using strain rates, maximum flame temperature as coordinates can provide a fundamental understanding of syngas combustion and applications.
KW - Counterflow diffusion flame
KW - Flame radiation
KW - Flammability limits
KW - Syngas flames
UR - http://www.scopus.com/inward/record.url?scp=81255184586&partnerID=8YFLogxK
U2 - 10.4028/www.scientific.net/AMM.110-116.4899
DO - 10.4028/www.scientific.net/AMM.110-116.4899
M3 - 会议稿件
AN - SCOPUS:81255184586
SN - 9783037852620
T3 - Applied Mechanics and Materials
SP - 4899
EP - 4906
BT - Mechanical and Aerospace Engineering
T2 - 2nd International Conference on Mechanical and Aerospace Engineering, ICMAE 2011
Y2 - 29 July 2011 through 31 July 2011
ER -