Convergence of max-arithmetic mean powers of a fuzzy matrix

Yung Yih Lur*, Yan Kuen Wu, Sy Ming Guu

*此作品的通信作者

研究成果: 期刊稿件文章同行評審

13 引文 斯高帕斯(Scopus)

摘要

Fuzzy matrices provide convenient representations for fuzzy relations on finite universes. In the literature, the powers of a fuzzy matrix with max-min/max-product/max-Archimedean t-norm compositions have been studied. It turns out that the limiting behavior of the powers of a fuzzy matrix depends on the composition involved. In this paper, the max-arithmetic mean composition is considered for the fuzzy relations. We show that the max-arithmetic mean powers of a fuzzy matrix always are convergent.

原文英語
頁(從 - 到)2516-2522
頁數7
期刊Fuzzy Sets and Systems
158
發行號22
DOIs
出版狀態已出版 - 16 11 2007
對外發佈

指紋

深入研究「Convergence of max-arithmetic mean powers of a fuzzy matrix」主題。共同形成了獨特的指紋。

引用此