Cyclic Strain Mitigates Nanoparticle Internalization by Vascular Smooth Muscle Cells

Chia Liang Tsai, Ching Yun Huang, Yi Ching Lu, Li Mei Pai, Daniel Horák, Yunn Hwa Ma*

*此作品的通信作者

研究成果: 期刊稿件文章同行評審

3 引文 斯高帕斯(Scopus)

摘要

Background: Intravascular delivery of nanoparticles for theranostic application permits direct interaction of nanoparticles and vascular cells. Since vascular smooth muscle cells (VSMCs), the major components of the vascular wall, are constantly subjected to mechanical stimulation from hemodynamic influence, we asked whether cyclic strain may modulate internalization of magnetic nanoparticles (MNPs) by cultured VSMCs. Methods: Cyclic strain (1 Hz and 10%) was applied with Flexcell system in cultured VSMCs from rats, with cell-associated MNPs (MNPcell) determined by a colorimetric iron assay. Transmission and scanning electron microscopy were used for morphology studies. Confocal microscopy was used to demonstrate distribution of actin assembly in VSMCs. Results: Incubation of poly(acrylic acid) (PAA)-coated MNPs with VSMCs for 4 h induced microvilli formation and MNP internalization. Application of cyclic strain for 4–12 h significantly reduced MNPcell by up to 65% (p < 0.05), which was associated with blunted microvilli and reduced vesicle size/cell, but not vesicle numbers/cell. Confocal microscopy demonstrated that both cyclic strain and fibronectin coating of the culture plate reduced internalized MNPs, which were co-localized with vinculin. Furthermore, cytochalasin D reduced MNPcell, suggesting a role of actin polymerization in MNP uptake by VSMCs; however, a myosin II ATPase inhibitor, blebbistatin, exhibited no effect. Cyclic strain also attenuated uptake of PAA-MNPs by LN-229 cells and uptake of poly-L-lysine-coated MNPs by VSMCs. Conclusion: In such a dynamic milieu, cyclic strain may impede cellular internalization of nanocarriers, which spares the nanocarriers and augments their delivery to the target site in the lumen of vessels or outside of the circulatory system.

原文英語
頁(從 - 到)969-981
頁數13
期刊International Journal of Nanomedicine
17
DOIs
出版狀態已出版 - 2022

文獻附註

Publisher Copyright:
© 2022 Tsai et al.

指紋

深入研究「Cyclic Strain Mitigates Nanoparticle Internalization by Vascular Smooth Muscle Cells」主題。共同形成了獨特的指紋。

引用此