Deep Neural Network for the Detections of Fall and Physical Activities Using Foot Pressures and Inertial Sensing

Hsiao Lung Chan, Yuan Ouyang*, Rou Shayn Chen, Yen Hung Lai, Cheng Chung Kuo, Guo Sheng Liao, Wen Yen Hsu, Ya Ju Chang*

*此作品的通信作者

研究成果: 期刊稿件文章同行評審

9 引文 斯高帕斯(Scopus)

摘要

Fall detection and physical activity (PA) classification are important health maintenance issues for the elderly and people with mobility dysfunctions. The literature review showed that most studies concerning fall detection and PA classification addressed these issues individually, and many were based on inertial sensing from the trunk and upper extremities. While shoes are common footwear in daily off-bed activities, most of the aforementioned studies did not focus much on shoe-based measurements. In this paper, we propose a novel footwear approach to detect falls and classify various types of PAs based on a convolutional neural network and recurrent neural network hybrid. The footwear-based detections using deep-learning technology were demonstrated to be efficient based on the data collected from 32 participants, each performing simulated falls and various types of PAs: fall detection with inertial measures had a higher F1-score than detection using foot pressures; the detections of dynamic PAs (jump, jog, walks) had higher F1-scores while using inertial measures, whereas the detections of static PAs (sit, stand) had higher F1-scores while using foot pressures; the combination of foot pressures and inertial measures was most efficient in detecting fall, static, and dynamic PAs.

原文英語
文章編號495
期刊Sensors
23
發行號1
DOIs
出版狀態已出版 - 02 01 2023

文獻附註

Publisher Copyright:
© 2023 by the authors.

指紋

深入研究「Deep Neural Network for the Detections of Fall and Physical Activities Using Foot Pressures and Inertial Sensing」主題。共同形成了獨特的指紋。

引用此