TY - JOUR
T1 - Design and Synthesis of P(AAm-co-NaAMPS)-Alginate-Xanthan Hydrogels and the Study of Their Mechanical and Rheological Properties in Artificial Vascular Graft Applications
AU - Li, Zhutong
AU - Giarto, Joshua
AU - Zhang, Jue
AU - Gim, Jinsu
AU - Chen, Edward
AU - Enriquez, Eduardo
AU - Jafuta, Lauren
AU - Mahalingam, Esha
AU - Turng, Lih Sheng
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/5/7
Y1 - 2024/5/7
N2 - Cardiovascular diseases (CVDs) are the number one cause of mortality among non-communicable diseases worldwide. Expanded polytetrafluoroethylene (ePTFE) is a widely used material for making artificial vascular grafts to treat CVDs; however, its application in small-diameter vascular grafts is limited by the issues of thrombosis formation and intimal hyperplasia. This paper presents a novel approach that integrates a hydrogel layer on the lumen of ePTFE vascular grafts through mechanical interlocking to efficiently facilitate endothelialization and alleviate thrombosis and restenosis problems. This study investigated how various gel synthesis variables, including N,N’-Methylenebisacrylamide (MBAA), sodium alginate, and calcium sulfate (CaSO4), influence the mechanical and rheological properties of P(AAm-co-NaAMPS)-alginate-xanthan hydrogels intended for vascular graft applications. The findings obtained can provide valuable guidance for crafting hydrogels suitable for artificial vascular graft fabrication. The increased sodium alginate content leads to increased equilibrium swelling ratios, greater viscosity in hydrogel precursor solutions, and reduced transparency. Adding more CaSO4 decreases the swelling ratio of a hydrogel system, which offsets the increased swelling ratio caused by alginate. Increased MBAA in the hydrogel system enhances both the shear modulus and Young’s modulus while reducing the transparency of the hydrogel system and the pore size of freeze-dried samples. Overall, Hydrogel (6A12M) with 2.58 mg/mL CaSO4 was the optimal candidate for ePTFE–hydrogel vascular graft applications due to its smallest pore size, highest shear storage modulus and Young’s modulus, smallest swelling ratio, and a desirable precursor solution viscosity that facilitates fabrication.
AB - Cardiovascular diseases (CVDs) are the number one cause of mortality among non-communicable diseases worldwide. Expanded polytetrafluoroethylene (ePTFE) is a widely used material for making artificial vascular grafts to treat CVDs; however, its application in small-diameter vascular grafts is limited by the issues of thrombosis formation and intimal hyperplasia. This paper presents a novel approach that integrates a hydrogel layer on the lumen of ePTFE vascular grafts through mechanical interlocking to efficiently facilitate endothelialization and alleviate thrombosis and restenosis problems. This study investigated how various gel synthesis variables, including N,N’-Methylenebisacrylamide (MBAA), sodium alginate, and calcium sulfate (CaSO4), influence the mechanical and rheological properties of P(AAm-co-NaAMPS)-alginate-xanthan hydrogels intended for vascular graft applications. The findings obtained can provide valuable guidance for crafting hydrogels suitable for artificial vascular graft fabrication. The increased sodium alginate content leads to increased equilibrium swelling ratios, greater viscosity in hydrogel precursor solutions, and reduced transparency. Adding more CaSO4 decreases the swelling ratio of a hydrogel system, which offsets the increased swelling ratio caused by alginate. Increased MBAA in the hydrogel system enhances both the shear modulus and Young’s modulus while reducing the transparency of the hydrogel system and the pore size of freeze-dried samples. Overall, Hydrogel (6A12M) with 2.58 mg/mL CaSO4 was the optimal candidate for ePTFE–hydrogel vascular graft applications due to its smallest pore size, highest shear storage modulus and Young’s modulus, smallest swelling ratio, and a desirable precursor solution viscosity that facilitates fabrication.
KW - hydrogel
KW - mechanical and rheological properties
KW - PAAm
KW - PNaAMPS
KW - vascular graft
UR - http://www.scopus.com/inward/record.url?scp=85194371199&partnerID=8YFLogxK
U2 - 10.3390/gels10050319
DO - 10.3390/gels10050319
M3 - 文章
C2 - 38786235
AN - SCOPUS:85194371199
SN - 2310-2861
VL - 10
JO - Gels
JF - Gels
IS - 5
M1 - 319
ER -