Detection of coronary lesions in Kawasaki disease by Scaled-YOLOv4 with HarDNet backbone

Ho Chang Kuo, Shih Hsin Chen*, Yi Hui Chen, Yu Chi Lin, Chih Yung Chang, Yun Cheng Wu, Tzai Der Wang, Ling Sai Chang, I. Hsin Tai, Kai Sheng Hsieh*

*此作品的通信作者

研究成果: 期刊稿件文章同行評審

3 引文 斯高帕斯(Scopus)

摘要

Introduction: Kawasaki disease (KD) may increase the risk of myocardial infarction or sudden death. In children, delayed KD diagnosis and treatment can increase coronary lesions (CLs) incidence by 25% and mortality by approximately 1%. This study focuses on the use of deep learning algorithm-based KD detection from cardiac ultrasound images. Methods: Specifically, object detection for the identification of coronary artery dilatation and brightness of left and right coronary artery is proposed and different AI algorithms were compared. In infants and young children, a dilated coronary artery is only 1-2 mm in diameter than a normal one, and its ultrasound images demonstrate a large amount of noise background-this can be a considerable challenge for image recognition. This study proposes a framework, named Scaled-YOLOv4-HarDNet, integrating the recent Scaled-YOLOv4 but with the CSPDarkNet backbone replaced by the CSPHarDNet framework. Results: The experimental result demonstrated that the mean average precision (mAP) of Scaled-YOLOv4-HarDNet was 72.63%, higher than that of Scaled YOLOv4 and YOLOv5 (70.05% and 69.79% respectively). In addition, it could detect small objects significantly better than Scaled-YOLOv4 and YOLOv5. Conclusions: Scaled-YOLOv4-HarDNet may aid physicians in detecting KD and determining the treatment approach. Because relatively few artificial intelligence solutions about images for KD detection have been reported thus far, this paper is expected to make a substantial academic and clinical contribution.

原文英語
文章編號1000374
頁(從 - 到)1000374
期刊Frontiers in Cardiovascular Medicine
9
DOIs
出版狀態已出版 - 20 01 2023

文獻附註

Copyright © 2023 Kuo, Chen, Chen, Lin, Chang, Wu, Wang, Chang, Tai and Hsieh.

指紋

深入研究「Detection of coronary lesions in Kawasaki disease by Scaled-YOLOv4 with HarDNet backbone」主題。共同形成了獨特的指紋。

引用此