TY - JOUR
T1 - Development of the ELECTRE Method Under Pythagorean Fuzzy Sets Based on Existing Correlation Coefficients for Cotton Fabric Selection
AU - Ye, Jing
AU - Chen, Ting Yu
N1 - Publisher Copyright:
© 2023 The Author(s). Published with license by Taylor & Francis Group, LLC.
PY - 2023
Y1 - 2023
N2 - Cotton fabric selection is a challenging task in the garment product design and development process, and the selection of optimal alternative under the presence of multiple decision criteria becomes complex, and hence it is considered as a multi-criteria decision-making (MCDM) problem. In addition, the selection process involves fuzziness and uncertainty. In this study, Pythagorean fuzzy sets (PFSs) are introduced to handle uncertain information. Elimination and choice translating reality (ELECTRE) is a well-known outranking method for solving MCDM problems. Therefore, we extend the ELECTRE method under the PFS environment, and a correlation-based closeness coefficient is proposed to compare Pythagorean fuzzy numbers (PFNs). This paper applies the proposed PF-ELECTRE approach in solving a practical case involving the ranking cotton fabrics. To exhibit the superiority and robustness of the suggested method, sensitivity analysis is performed to examine the impacts of weights variation, as well as a comparative analysis is carried out between the PF-ELECTRE with several existing MCDM methods. The research contributes to the advancement and development of outranking MCDM methods through a novel PF-ELECTRE approach that utilizes the weighted correlation coefficient. Moreover, the developed method can obtain reliable results and can be used to other textile domains.
AB - Cotton fabric selection is a challenging task in the garment product design and development process, and the selection of optimal alternative under the presence of multiple decision criteria becomes complex, and hence it is considered as a multi-criteria decision-making (MCDM) problem. In addition, the selection process involves fuzziness and uncertainty. In this study, Pythagorean fuzzy sets (PFSs) are introduced to handle uncertain information. Elimination and choice translating reality (ELECTRE) is a well-known outranking method for solving MCDM problems. Therefore, we extend the ELECTRE method under the PFS environment, and a correlation-based closeness coefficient is proposed to compare Pythagorean fuzzy numbers (PFNs). This paper applies the proposed PF-ELECTRE approach in solving a practical case involving the ranking cotton fabrics. To exhibit the superiority and robustness of the suggested method, sensitivity analysis is performed to examine the impacts of weights variation, as well as a comparative analysis is carried out between the PF-ELECTRE with several existing MCDM methods. The research contributes to the advancement and development of outranking MCDM methods through a novel PF-ELECTRE approach that utilizes the weighted correlation coefficient. Moreover, the developed method can obtain reliable results and can be used to other textile domains.
KW - Cotton fabric selection
KW - ELECTRE
KW - Pythagorean fuzzy sets
KW - comparative analysis
KW - correlation coefficient
KW - multi-criteriadecision-making
UR - http://www.scopus.com/inward/record.url?scp=85153069730&partnerID=8YFLogxK
U2 - 10.1080/15440478.2023.2201486
DO - 10.1080/15440478.2023.2201486
M3 - 文章
AN - SCOPUS:85153069730
SN - 1544-0478
VL - 20
JO - Journal of Natural Fibers
JF - Journal of Natural Fibers
IS - 2
M1 - 2201486
ER -