TY - JOUR
T1 - Efficient removal of antibiotic oxytetracycline from water by Fenton-like reactions using reduced graphene oxide-supported bimetallic Pd/nZVI nanocomposites
AU - Nguyen, Chi Hieu
AU - Tran, Mai Lien
AU - Van Tran, Thi Tuong
AU - Juang, Ruey Shin
N1 - Publisher Copyright:
© 2021 Taiwan Institute of Chemical Engineers
PY - 2021/2
Y1 - 2021/2
N2 - In this study, the reduced graphene oxide-supported bimetallic palladium-zero-valent-iron (Pd/nZVI/rGO) composites were synthesized using a facile one-step liquid-phase reduction method. Physicochemical and textural properties as well as chemical composition of the as-prepared composites were firstly characterized. Transmission electron microscopy (TEM) and X-ray diffractometry (XRD) analysis revealed that the presence of rGO sheets prevented the aggregation of Pd/nZVI nanoparticles and retarded the transformation of iron corrosion products from magnetite/maghemite to lepidocrocite, inducing such nanoparticles to be dispersed more homogeneously. In addition, the loading of Pd/nZVI nanoparticles could avoid the stacking of rGO sheets effectively. The synthesized Pd/nZVI/rGO composites were then used to remove antibiotic oxytetracycline (OTC) from aqueous solutions. It was found that the introduction of an optimal amount of rGO into Pd/nZVI nanoparticles enhanced significantly OTC removal. In particular, the presence of 5 wt.% of rGO in Pd/nZVI/rGO composite (dose, 0.1 g/L) exhibited the highest OTC removal of 96.5% (initially, 100 mg/L) after 60-min reaction at pH 5.0 and 25°C. The removal of OTC by Pd/nZVI/rGO composite was contributed by adsorption process, Fenton-like reactions, and reduction reactions. The Pd/nZVI/rGO composites exhibited better reusability than pristine nZVI particles. The pathways of OTC degradation over Pd/nZVI/rGO nanocomposite were also proposed.
AB - In this study, the reduced graphene oxide-supported bimetallic palladium-zero-valent-iron (Pd/nZVI/rGO) composites were synthesized using a facile one-step liquid-phase reduction method. Physicochemical and textural properties as well as chemical composition of the as-prepared composites were firstly characterized. Transmission electron microscopy (TEM) and X-ray diffractometry (XRD) analysis revealed that the presence of rGO sheets prevented the aggregation of Pd/nZVI nanoparticles and retarded the transformation of iron corrosion products from magnetite/maghemite to lepidocrocite, inducing such nanoparticles to be dispersed more homogeneously. In addition, the loading of Pd/nZVI nanoparticles could avoid the stacking of rGO sheets effectively. The synthesized Pd/nZVI/rGO composites were then used to remove antibiotic oxytetracycline (OTC) from aqueous solutions. It was found that the introduction of an optimal amount of rGO into Pd/nZVI nanoparticles enhanced significantly OTC removal. In particular, the presence of 5 wt.% of rGO in Pd/nZVI/rGO composite (dose, 0.1 g/L) exhibited the highest OTC removal of 96.5% (initially, 100 mg/L) after 60-min reaction at pH 5.0 and 25°C. The removal of OTC by Pd/nZVI/rGO composite was contributed by adsorption process, Fenton-like reactions, and reduction reactions. The Pd/nZVI/rGO composites exhibited better reusability than pristine nZVI particles. The pathways of OTC degradation over Pd/nZVI/rGO nanocomposite were also proposed.
KW - Bimetallic Pd/nZVI composite
KW - Degradation pathways
KW - Oxytetracycline
KW - Reduced graphene oxide
UR - http://www.scopus.com/inward/record.url?scp=85100624656&partnerID=8YFLogxK
U2 - 10.1016/j.jtice.2021.02.001
DO - 10.1016/j.jtice.2021.02.001
M3 - 文章
AN - SCOPUS:85100624656
SN - 1876-1070
VL - 119
SP - 80
EP - 89
JO - Journal of the Taiwan Institute of Chemical Engineers
JF - Journal of the Taiwan Institute of Chemical Engineers
ER -