Evaluation of ensemble strategy on the development of multiple view ankle fracture detection algorithm

Chi Tung Cheng, Chih Po Hsu, Chun Hsiang Ooyang, Chia Yi Chou, Nai Yu Lin, Jia Yen Lin, Yi Kang Ku, Hou Shian Lin, Shao Ku Kao, Huan Wu Chen, Yu Tung Wu, Chien Hung Liao*

*此作品的通信作者

研究成果: 期刊稿件文章同行評審

2 引文 斯高帕斯(Scopus)

摘要

Objective: To identify the feasibility and efficiency of deep convolutional neural networks (DCNNs) in the detection of ankle fractures and to explore ensemble strategies that applied multiple projections of radio-graphs. Ankle radiographs (AXRs) are the primary tool used to diagnose ankle fractures. Applying DCNN algorithms on AXRs can potentially improve the diagnostic accuracy and efficiency of detecting ankle fractures. Methods: A DCNN was trained using a trauma image registry, including 3102 AXRs. We separately trained the DCNN on anteroposterior (AP) and lateral (Lat) AXRs. Different ensemble methods, such as “sum-up,” “severance-OR,” and “severance-Both,” were evaluated to incorporate the results of the model using different projections of view. Results: The AP/Lat model’s individual sensitivity, spec-ificity, positive-predictive value, accuracy, and F1 score were 79%/84%, 90%/86%, 88%/86%, 83%/85%, and 0.816/0.850, respectively. Furthermore, the area under the receiver operating characteristic curve (AUROC) of the AP/Lat model was 0.890/0.894 (95% CI: 0.826– 0.954/0.831–0.953). The sum-up method generated balanced results by applying both models and obtained an AUROC of 0.917 (95% CI: 0.863–0.972) with 87% accuracy. The severance-OR method resulted in a better sensitivity of 90%, and the severance-Both method obtained a high specificity of 94%. Conclusion: Ankle fracture in the AXR could be identified by the trained DCNN algorithm. The selection of ensemble methods can depend on the clinical situation which might help clinicians detect ankle fractures effi-ciently without interrupting the current clinical pathway. Advances in knowledge: This study demonstrated different ensemble strategies of AI algorithms on multiple view AXRs to optimize the performance in various clinical needs.

原文英語
文章編號20220924
頁(從 - 到)20220924
期刊British Journal of Radiology
96
發行號1145
DOIs
出版狀態已出版 - 01 04 2023

文獻附註

Publisher Copyright:
© 2023 The Authors.

指紋

深入研究「Evaluation of ensemble strategy on the development of multiple view ankle fracture detection algorithm」主題。共同形成了獨特的指紋。

引用此