TY - JOUR
T1 - Evolved distance measures for circular intuitionistic fuzzy sets and their exploitation in the technique for order preference by similarity to ideal solutions
AU - Chen, Ting Yu
N1 - © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
PY - 2023/7
Y1 - 2023/7
N2 - Circular intuitionistic fuzzy (C-IF) sets are an up-and-coming tool for enforcing indistinct and imprecise information in variable and convoluted decision-making situations. C-IF sets, as opposed to typical intuitionistic fuzzy sets, are better suited for identifying the evaluation data with uncertainty in intricate realistic decision situations. The architecture of the technique for order preference by similarity to ideal solutions (TOPSIS) provides powerful evaluation tools to aid decision-making in intuitionistic fuzzy conditions. To address appraisal issues associated with decision analysis involving extremely convoluted information, this paper propounds a novel C-IF TOPSIS approach in the context of C-IF uncertainty. This research makes three significant contributions. First, based on the three- and four-term operating rules, this research introduces C-IF Minkowski distance measures, which are new generalized representations of distance metrics applicable to C-IF values and C-IF sets. Such general C-IF distance metrics can alleviate the constraints of established C-IF distance measures, provide usage resiliency through parameter settings, and broaden the applicability of metric analysis. Second, unlike existing C-IF TOPSIS methods, this research fully utilizes C-IF information characteristics and extends the core structure of the classic TOPSIS to C-IF contexts. With the newly developed C-IF Minkowski metrics, this study faithfully demonstrates the trade-off evaluation and compromise decision rules in the TOPSIS framework. Third, this research builds on the core strengths of the pioneered C-IF Minkowski distance measures to create innovative C-IF TOPSIS techniques utilizing four different combinations, including displaced and fixed anchoring frameworks, as well as three- and four-term representations. Such a refined C-IF TOPSIS methodology can assist decision-makers in proactively addressing increasingly sophisticated decision-making problems in practical settings. Finally, this research employs two innovative prioritization algorithms to address a site selection issue of large-scale epidemic hospitals to illustrate the superior capabilities of the C-IF TOPSIS methodology over some current related approaches.
AB - Circular intuitionistic fuzzy (C-IF) sets are an up-and-coming tool for enforcing indistinct and imprecise information in variable and convoluted decision-making situations. C-IF sets, as opposed to typical intuitionistic fuzzy sets, are better suited for identifying the evaluation data with uncertainty in intricate realistic decision situations. The architecture of the technique for order preference by similarity to ideal solutions (TOPSIS) provides powerful evaluation tools to aid decision-making in intuitionistic fuzzy conditions. To address appraisal issues associated with decision analysis involving extremely convoluted information, this paper propounds a novel C-IF TOPSIS approach in the context of C-IF uncertainty. This research makes three significant contributions. First, based on the three- and four-term operating rules, this research introduces C-IF Minkowski distance measures, which are new generalized representations of distance metrics applicable to C-IF values and C-IF sets. Such general C-IF distance metrics can alleviate the constraints of established C-IF distance measures, provide usage resiliency through parameter settings, and broaden the applicability of metric analysis. Second, unlike existing C-IF TOPSIS methods, this research fully utilizes C-IF information characteristics and extends the core structure of the classic TOPSIS to C-IF contexts. With the newly developed C-IF Minkowski metrics, this study faithfully demonstrates the trade-off evaluation and compromise decision rules in the TOPSIS framework. Third, this research builds on the core strengths of the pioneered C-IF Minkowski distance measures to create innovative C-IF TOPSIS techniques utilizing four different combinations, including displaced and fixed anchoring frameworks, as well as three- and four-term representations. Such a refined C-IF TOPSIS methodology can assist decision-makers in proactively addressing increasingly sophisticated decision-making problems in practical settings. Finally, this research employs two innovative prioritization algorithms to address a site selection issue of large-scale epidemic hospitals to illustrate the superior capabilities of the C-IF TOPSIS methodology over some current related approaches.
KW - Anchoring framework
KW - C-IF Minkowski distance measure
KW - Circular intuitionistic fuzzy (C-IF) set
KW - Site selection
KW - Technique for order preference by similarity to ideal solutions (TOPSIS)
UR - http://www.scopus.com/inward/record.url?scp=85143758423&partnerID=8YFLogxK
U2 - 10.1007/s10462-022-10318-x
DO - 10.1007/s10462-022-10318-x
M3 - 文章
C2 - 36536928
AN - SCOPUS:85143758423
SN - 0269-2821
VL - 56
SP - 7347
EP - 7401
JO - Artificial Intelligence Review
JF - Artificial Intelligence Review
IS - 7
ER -