Far-infrared therapy accelerates diabetic wound healing via recruitment of tissue angiogenesis in a full-thickness wound healing model in rats

Rong Fu Chen, Keng Fan Liu, Su Shin Lee, Shu Hung Huang, Yi Chia Wu, Yun Nan Lin, Chun Ting Wang, Yur Ren Kuo*

*此作品的通信作者

研究成果: 期刊稿件文章同行評審

5 引文 斯高帕斯(Scopus)

摘要

Far-infrared ray (FIR) therapy has been applied in the tissue regeneration field. Studies have revealed that FIR could enhance wound healing. However, the biological effects of FIR on diabetic wounds remain unclear. Our study aims to investigate whether FIR could accelerate diabetic wound healing and analyze the biomechanisms. A dorsal skin defect (area, 6 × 5 cm2) in a streptozotocin (STZ)-induced diabetes rodent model was designed. Thirty-two male Wistar rats were divided into 4 groups (n = 8 each subgroup). Group 1 consisted of sham, non-diabetic control; group 2, diabetic control without treatment; group 3, diabetic rats received 20 min FIR (FIR-20, 20 min per session, triplicate/weekly for 4 weeks) and group 4, diabetic rats received 40 min FIR (FIR-40, 40 min per session, triplicate in one week for 4 weeks). The wound healing was assessed clinically. Skin blood flow was measured by laser Doppler. The vascular endothelial growth factor (VEGF), 8-hydroxy-2-deoxyguanosine (8-OHdG), eNOS, and Ki-67, were analyzed with immunohistochemical (IHC) staining. Laser Doppler flowmetry analysis of the blood flow of wounding area revealed the blood flow was higher in diabetic rats who received 40 min FIR (FIR-40) as compared to that in FIR-20 group. The wounding area was significantly reduced in the FIR-40 group than in the diabetic control groups. Histological findings of peri-wounding tissue revealed a significant increase in the neo-vessels in the FIR-treated groups as compared to the controls. IHC staining of periwounding biopsy tissue showed significant increases in angiogenesis expressions (VEGF, eNOS, and EGF), cell proliferation (Ki-67), and suppressed inflammatory response and oxygen radicles (CD45, 8-OHdG) expressions in the FIR-treated groups as compared to that in controls. Treatment with the optimal dosage of FIR significantly facilitated diabetic wound healing and associated with suppressed pro-inflammatory response and increased neovascularization and tissue regeneration.

原文英語
文章編號1922
期刊Biomedicines
9
發行號12
DOIs
出版狀態已出版 - 12 2021
對外發佈

文獻附註

Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

指紋

深入研究「Far-infrared therapy accelerates diabetic wound healing via recruitment of tissue angiogenesis in a full-thickness wound healing model in rats」主題。共同形成了獨特的指紋。

引用此