摘要
We construct a large scale of causal knowledge in term of Fabula elements by extracting causal links from existing common sense ontology ConceptNet5. We design a Constrained Monte Carlo Tree Search (cMCTS) algorithm that allows users to specify positive and negative concepts to appear in the generated stories. cMCTS can find a believable causal story plot. We show the merits by experiments and discuss the remedy strategies in cMCTS that may generate incoherent causal plots.
原文 | 英語 |
---|---|
主出版物標題 | Proceedings of the 12th AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, AIIDE 2016 |
編輯 | Nathan Sturtevant, Brian Magerko |
發行者 | Association for the Advancement of Artificial Intelligence |
頁面 | 218-224 |
頁數 | 7 |
ISBN(電子) | 9781577357728 |
出版狀態 | 已出版 - 08 10 2016 |
對外發佈 | 是 |
事件 | 12th Annual AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, AIIDE 2016 - Burlingame, 美國 持續時間: 08 10 2016 → 12 10 2016 |
出版系列
名字 | Proceedings - AAAI Artificial Intelligence and Interactive Digital Entertainment Conference, AIIDE |
---|---|
ISSN(列印) | 2326-909X |
ISSN(電子) | 2334-0924 |
Conference
Conference | 12th Annual AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, AIIDE 2016 |
---|---|
國家/地區 | 美國 |
城市 | Burlingame |
期間 | 08/10/16 → 12/10/16 |
文獻附註
Publisher Copyright:Copyright © 2016, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.