Generate Believable Causal Plots with User Preferences Using Constrained Monte Carlo Tree Search

Von Wun Soo, Chi Mou Lee, Tai Hsun Chen

研究成果: 圖書/報告稿件的類型會議稿件同行評審

6 引文 斯高帕斯(Scopus)

摘要

We construct a large scale of causal knowledge in term of Fabula elements by extracting causal links from existing common sense ontology ConceptNet5. We design a Constrained Monte Carlo Tree Search (cMCTS) algorithm that allows users to specify positive and negative concepts to appear in the generated stories. cMCTS can find a believable causal story plot. We show the merits by experiments and discuss the remedy strategies in cMCTS that may generate incoherent causal plots.

原文英語
主出版物標題Proceedings of the 12th AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, AIIDE 2016
編輯Nathan Sturtevant, Brian Magerko
發行者Association for the Advancement of Artificial Intelligence
頁面218-224
頁數7
ISBN(電子)9781577357728
出版狀態已出版 - 08 10 2016
對外發佈
事件12th Annual AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, AIIDE 2016 - Burlingame, 美國
持續時間: 08 10 201612 10 2016

出版系列

名字Proceedings - AAAI Artificial Intelligence and Interactive Digital Entertainment Conference, AIIDE
ISSN(列印)2326-909X
ISSN(電子)2334-0924

Conference

Conference12th Annual AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, AIIDE 2016
國家/地區美國
城市Burlingame
期間08/10/1612/10/16

文獻附註

Publisher Copyright:
Copyright © 2016, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

指紋

深入研究「Generate Believable Causal Plots with User Preferences Using Constrained Monte Carlo Tree Search」主題。共同形成了獨特的指紋。

引用此