Hemodynamic and electromechanical effects of paraquat in rat heart

Chih Chuan Lin, Kuang Hung Hsu, Chia Pang Shih, Gwo Jyh Chang*

*此作品的通信作者

研究成果: 期刊稿件文章同行評審

7 引文 斯高帕斯(Scopus)

摘要

Paraquat (PQ) is a highly lethal herbicide. Ingestion of large quantities of PQ usually results in cardiovascular collapse and eventual mortality. Recent pieces of evidence indicate possible involvement of oxidative stress- and inflammation-related factors in PQ-induced cardiac toxicity. However, little information exists on the relationship between hemodynamic and cardiac electromechanical effects involved in acute PQ poisoning. The present study investigated the effects of acute PQ exposure on hemodynamics and electrocardiogram (ECG) in vivo, left ventricular (LV) pressure in isolated hearts, as well as contractile and intracellular Ca2+ properties and ionic currents in ventricular myocytes in a rat model. In anesthetized rats, intravenous PQ administration (100 or 180 mg/kg) induced dose-dependent decreases in heart rate, blood pressure, and cardiac contractility (LV +dP/dtmax). Furthermore, PQ administration prolonged the PR, QRS, QT, and rate-corrected QT (QTc) intervals. In Langendorff-perfused isolated hearts, PQ (33 or 60 μM) decreased LV pressure and contractility (LV +dP/dtmax). PQ (10–60 μM) reduced the amplitudes of Ca2+ transients and fractional cell shortening in a concentration-dependent manner in isolated ventricular myocytes. Moreover, whole-cell patch-clamp experiments demonstrated that PQ decreased the current amplitude and availability of the transient outward K+ channel (Ito) and altered its gating kinetics. These results suggest that PQ-induced cardiotoxicity results mainly from diminished Ca2+ transients and inhibited K+ channels in cardiomyocytes, which lead to LV contractile force suppression and QTc interval prolongation. These findings should provide novel cues to understand PQ-induced cardiac suppression and electrical disturbances and may aid in the development of new treatment modalities.

原文英語
文章編號e0234591
期刊PLoS ONE
16
發行號4 April
DOIs
出版狀態已出版 - 04 2021

文獻附註

Publisher Copyright:
Copyright: © 2021 Lin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

指紋

深入研究「Hemodynamic and electromechanical effects of paraquat in rat heart」主題。共同形成了獨特的指紋。

引用此