摘要
This study explores the performance of Convolutional Neural Networks (CNNs) in the context of humanoid robot localization in dynamic environments. Utilizing a front-mounted camera system, initial experiments demonstrate CNNs achieving a 72% accuracy in position and a 92% accuracy rate in orientation with an 8000-image dataset. These results underscore the effectiveness of CNNs in addressing the challenge of precise robot localization. Moreover, the study introduces the YOLO (You Only Look Once) object detection algorithm to further enhance performance. Beyond robotics, this research extends to applications in smartphone navigation, Indoor GPS systems, and drone tracking. The paper provides insights into the methodologies employed and highlights the transformative potential of integrating CNNs into localization tasks.
原文 | 英語 |
---|---|
主出版物標題 | ICARM 2024 - 2024 9th IEEE International Conference on Advanced Robotics and Mechatronics |
發行者 | Institute of Electrical and Electronics Engineers Inc. |
頁面 | 771-776 |
頁數 | 6 |
ISBN(電子) | 9798350385724 |
ISBN(列印) | 9798350385724 |
DOIs | |
出版狀態 | 已出版 - 2024 |
事件 | 9th IEEE International Conference on Advanced Robotics and Mechatronics, ICARM 2024 - Tokyo, 日本 持續時間: 08 07 2024 → 10 07 2024 |
出版系列
名字 | ICARM 2024 - 2024 9th IEEE International Conference on Advanced Robotics and Mechatronics |
---|
Conference
Conference | 9th IEEE International Conference on Advanced Robotics and Mechatronics, ICARM 2024 |
---|---|
國家/地區 | 日本 |
城市 | Tokyo |
期間 | 08/07/24 → 10/07/24 |
文獻附註
Publisher Copyright:© 2024 IEEE.