Hybrid CNN-LSTM Network for ECG Classification and Its Software-Hardware Co-Design Approach

Song Nien Tang*, Yuan Ho Chen, Yu Wei Chang, Yu Ting Chen, Shuo Hung Chou

*此作品的通信作者

研究成果: 圖書/報告稿件的類型會議稿件同行評審

2 引文 斯高帕斯(Scopus)

摘要

The hybrid architecture of a Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM) model has been progressively applied to the time-series data application. This paper developed a hybrid CNN-LSTM network to classify electrocardiography signals. Moreover, we proposed a software (SW)-hardware (HW) co-design approach using a system-on-chip (SoC) field-programmable gate array (FPGA) platform to implement the hybrid CNN-LSTM inference. In our SoC-FPGA design, the CNN model was completed using the SW program while the LSTM model that employs the block circulant weight matrix was realized using the FPGA HW. An experiment was made to achieve 98.63 % ECG detection accuracy within 208.2 ms using the proposed SW-HW co-design SoC-FPGA approach.

原文英語
主出版物標題Proceedings - International SoC Design Conference 2023, ISOCC 2023
發行者Institute of Electrical and Electronics Engineers Inc.
頁面173-174
頁數2
ISBN(電子)9798350327038
DOIs
出版狀態已出版 - 2023
事件20th International SoC Design Conference, ISOCC 2023 - Jeju, 韓國
持續時間: 25 10 202328 10 2023

出版系列

名字Proceedings - International SoC Design Conference 2023, ISOCC 2023

Conference

Conference20th International SoC Design Conference, ISOCC 2023
國家/地區韓國
城市Jeju
期間25/10/2328/10/23

文獻附註

Publisher Copyright:
© 2023 IEEE.

指紋

深入研究「Hybrid CNN-LSTM Network for ECG Classification and Its Software-Hardware Co-Design Approach」主題。共同形成了獨特的指紋。

引用此