摘要
The hybrid architecture of a Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM) model has been progressively applied to the time-series data application. This paper developed a hybrid CNN-LSTM network to classify electrocardiography signals. Moreover, we proposed a software (SW)-hardware (HW) co-design approach using a system-on-chip (SoC) field-programmable gate array (FPGA) platform to implement the hybrid CNN-LSTM inference. In our SoC-FPGA design, the CNN model was completed using the SW program while the LSTM model that employs the block circulant weight matrix was realized using the FPGA HW. An experiment was made to achieve 98.63 % ECG detection accuracy within 208.2 ms using the proposed SW-HW co-design SoC-FPGA approach.
原文 | 英語 |
---|---|
主出版物標題 | Proceedings - International SoC Design Conference 2023, ISOCC 2023 |
發行者 | Institute of Electrical and Electronics Engineers Inc. |
頁面 | 173-174 |
頁數 | 2 |
ISBN(電子) | 9798350327038 |
DOIs | |
出版狀態 | 已出版 - 2023 |
事件 | 20th International SoC Design Conference, ISOCC 2023 - Jeju, 韓國 持續時間: 25 10 2023 → 28 10 2023 |
出版系列
名字 | Proceedings - International SoC Design Conference 2023, ISOCC 2023 |
---|
Conference
Conference | 20th International SoC Design Conference, ISOCC 2023 |
---|---|
國家/地區 | 韓國 |
城市 | Jeju |
期間 | 25/10/23 → 28/10/23 |
文獻附註
Publisher Copyright:© 2023 IEEE.