Involvement of nPKC-MAPK pathway in the decrease of nucleophosmin/B23 during megakaryocytic differentiation of human myelogenous leukemia K562 cells

Chih Chung Chou, Benjamin Yat Ming Yung, Chen Ya Hsu*

*此作品的通信作者

研究成果: 期刊稿件文章同行評審

10 引文 斯高帕斯(Scopus)

摘要

Human myelogenous leukemia K562 cells were induced to undergo megakaryocytic differentiation by long-term treatment with phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA). The protein level of nucleophosmin/B23 (NPM/B23), a nucleolar protein, was substantially decreased upon TPA treatment. In this study, we found that the proteasome inhibitors blocked the decrease of NPM/B23 protein in response to TPA, suggesting the proteasomes were involved in the downregulation of NPM/B23 upon megakaryocytic differentiation. To investigate the signaling pathway in the downregulation of NPM/B23 during early TPA-induced megakaryocytic differentiation of K562 cells, K562 cells were treated with TPA in the presence of the PKC isozyme-selective inhibitors, GF109203X and Gö 6976, or MEK1 inhibitor, PD98059. The decrease of NPM/B23 protein in the TPA-treated K562 cells was blocked by GF109203X but not by Gö 6976, suggesting the involvement of novel PKCs in the downregulation of NPM/B23 during TPA-induced megakaryocytic differentiation of K562 cells. The application of MEK1 inhibitor PD98059 upon TPA treatment blocked the TPA-induced decrease of NPM/B23 protein and aborted the megakaryocytic differentiation but not to break through the cell growth arrest. Unlike NPM/B23, the degradation of nucleolin in the TPA-treated K562 cells could not be blocked by PD98059 while the TPA-induced megakaryocytic differentiation was abrogated. The decrease of NPM/B23 protein seems to be more correlated with the novel PKC-MAPK-induced megakaryocytic differentiation than another nucleolar protein, nucleolin. Taken together, our results indicated that novel PKC-MAPK pathway was required for the decrease of NPM/B23 during TPA-induced megakaryocytic differentiation.

原文英語
頁(從 - 到)2051-2059
頁數9
期刊Life Sciences
80
發行號22
DOIs
出版狀態已出版 - 08 05 2007
對外發佈

指紋

深入研究「Involvement of nPKC-MAPK pathway in the decrease of nucleophosmin/B23 during megakaryocytic differentiation of human myelogenous leukemia K562 cells」主題。共同形成了獨特的指紋。

引用此