TY - JOUR
T1 - Magnetic Resonance-Based Synthetic Computed Tomography Using Generative Adversarial Networks for Intracranial Tumor Radiotherapy Treatment Planning
AU - Wang, Chun Chieh
AU - Wu, Pei Huan
AU - Lin, Gigin
AU - Huang, Yen Ling
AU - Lin, Yu Chun
AU - Chang, Yi Peng
AU - Weng, Jun Cheng
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/3
Y1 - 2022/3
N2 - The purpose of this work is to develop a reliable deep-learning-based method that is capable of synthesizing needed CT from MRI for radiotherapy treatment planning. Simultaneously, we try to enhance the resolution of synthetic CT. We adopted pix2pix with a 3D framework, which is a conditional generative adversarial network, to map the MRI data domain into the CT data domain of our dataset. The original dataset contains paired MRI and CT images of 31 subjects; 26 pairs were used for model training and 5 were used for model validation. To identify the correctness of the synthetic CT of models, all of the synthetic CTs were calculated by the quantized image similarity formulas: cosine angle distance, Euclidean distance, mean square error, peak signal-to-noise ratio, and mean structural similarity. Two radiologists independently evaluated the satisfaction score, including spatial, detail, contrast, noise, and artifacts, for each imaging attribute. The mean (±standard deviation) of the structural similarity indices (CAD, L2 norm, MSE, PSNR, and MSSIM) between five real CT scans and the synthetic CT scans were 0.96 ± 0.015, 76.83 ± 12.06, 0.00118 ± 0.00037, 29.47 ± 1.35, and 0.84 ± 0.036, respectively. For synthetic CT, radiologists rated the results as evincing excellent satisfaction in spatial geometry and noise level, good satisfaction in contrast and artifacts, and fair imaging details. The similarity index and clinical evaluation results between synthetic CT and original CT guarantee the usability of the proposed method.
AB - The purpose of this work is to develop a reliable deep-learning-based method that is capable of synthesizing needed CT from MRI for radiotherapy treatment planning. Simultaneously, we try to enhance the resolution of synthetic CT. We adopted pix2pix with a 3D framework, which is a conditional generative adversarial network, to map the MRI data domain into the CT data domain of our dataset. The original dataset contains paired MRI and CT images of 31 subjects; 26 pairs were used for model training and 5 were used for model validation. To identify the correctness of the synthetic CT of models, all of the synthetic CTs were calculated by the quantized image similarity formulas: cosine angle distance, Euclidean distance, mean square error, peak signal-to-noise ratio, and mean structural similarity. Two radiologists independently evaluated the satisfaction score, including spatial, detail, contrast, noise, and artifacts, for each imaging attribute. The mean (±standard deviation) of the structural similarity indices (CAD, L2 norm, MSE, PSNR, and MSSIM) between five real CT scans and the synthetic CT scans were 0.96 ± 0.015, 76.83 ± 12.06, 0.00118 ± 0.00037, 29.47 ± 1.35, and 0.84 ± 0.036, respectively. For synthetic CT, radiologists rated the results as evincing excellent satisfaction in spatial geometry and noise level, good satisfaction in contrast and artifacts, and fair imaging details. The similarity index and clinical evaluation results between synthetic CT and original CT guarantee the usability of the proposed method.
KW - Attenuation correction
KW - Brain tumor
KW - Deep learning
KW - Generative adversarial net (GAN)
KW - MR-only simu-lation
KW - Radiotherapy planning
UR - http://www.scopus.com/inward/record.url?scp=85125870650&partnerID=8YFLogxK
U2 - 10.3390/jpm12030361
DO - 10.3390/jpm12030361
M3 - 文章
AN - SCOPUS:85125870650
SN - 2075-4426
VL - 12
JO - Journal of Personalized Medicine
JF - Journal of Personalized Medicine
IS - 3
M1 - 361
ER -