One-dimension range profile identification of radar targets based on a linear interpolation neural network

Guangmin Sun*, Xinming Zhang, Peng Wang, Weixian Liu, Jeffrey S. Fu

*此作品的通信作者

研究成果: 期刊稿件文章同行評審

5 引文 斯高帕斯(Scopus)

摘要

One-dimension range profile can reflect the precise geometric structure features of radar targets. The approach is comprehensively used for radar target identification (RTI), however it varies with target posture. This paper presents a novel neural network model - linear interpolation neural network (LINN) to solve the problem. LINN combines the variation information of one-dimension range profile with its invariant feature information. Simulation results show that this method greatly improves the target identification performance of radar systems.

原文英語
頁(從 - 到)2033-2040
頁數8
期刊Signal Processing
81
發行號10
DOIs
出版狀態已出版 - 10 2001
對外發佈

指紋

深入研究「One-dimension range profile identification of radar targets based on a linear interpolation neural network」主題。共同形成了獨特的指紋。

引用此