TY - JOUR
T1 - Oral cancer plasma tumor marker identified with bead-based affinity-fractionated proteomic technology
AU - Cheng, Ann Joy
AU - Chen, Li Chiu
AU - Chien, Kun Yi
AU - Chen, Yin Ju
AU - Chang, Joseph Tung Chieh
AU - Wang, Hung Ming
AU - Liao, Chun Ta
AU - Chen, I. How
PY - 2005/12
Y1 - 2005/12
N2 - Background: There is no plasma marker for detecting oral cancer, one of the most frequent cancers worldwide. We developed a bead-based affinity- fractionated proteomic method to discover a novel plasma marker for oral cancer. Methods: Affinity purification of heparinized plasma with magnetic beads and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis were used to screen potential oral cancer markers. We compiled MS protein profiles for 57 patients with oral cancer and compared them with profiles from 29 healthy controls. The spectra were analyzed statistically using flexAnalysis™ and Clin-Prot™ bioinformatic software. In each MS analysis, the peak intensities of interest were normalized with an internal standard (adrenocorticotropic hormone 18-39). For identification, affinity bead-purified plasma protein was subjected to MALDI TOF/TOF analysis followed by Mascot identification of the peptide sequences and a search of the National Center for Biotechnology Information protein database. Results: To optimize MALDI-TOF analysis based on the best discriminator of the cancer and control spectra, copper-chelated beads were used for plasma protein profiling. The within- and between-run CVs for assays were <4% and 7%, respectively. Six markers that differentiated between cancer and control spectra were found, with mean (SD) molecular masses of 2664 (1), 2850 (1), 3250 (1), 7735 (2), 7927 (2), and 9240 (2) Da. The 2664-Da marker, identified as a fragment of the fibrinogen α-chain, had the highest sensitivity (100%) and specificity (97%) for cancer. Conclusion: The high specificity and sensitivity of the fibrinogen α-chain fragment suggest that it may be a clinical useful tumor marker.
AB - Background: There is no plasma marker for detecting oral cancer, one of the most frequent cancers worldwide. We developed a bead-based affinity- fractionated proteomic method to discover a novel plasma marker for oral cancer. Methods: Affinity purification of heparinized plasma with magnetic beads and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis were used to screen potential oral cancer markers. We compiled MS protein profiles for 57 patients with oral cancer and compared them with profiles from 29 healthy controls. The spectra were analyzed statistically using flexAnalysis™ and Clin-Prot™ bioinformatic software. In each MS analysis, the peak intensities of interest were normalized with an internal standard (adrenocorticotropic hormone 18-39). For identification, affinity bead-purified plasma protein was subjected to MALDI TOF/TOF analysis followed by Mascot identification of the peptide sequences and a search of the National Center for Biotechnology Information protein database. Results: To optimize MALDI-TOF analysis based on the best discriminator of the cancer and control spectra, copper-chelated beads were used for plasma protein profiling. The within- and between-run CVs for assays were <4% and 7%, respectively. Six markers that differentiated between cancer and control spectra were found, with mean (SD) molecular masses of 2664 (1), 2850 (1), 3250 (1), 7735 (2), 7927 (2), and 9240 (2) Da. The 2664-Da marker, identified as a fragment of the fibrinogen α-chain, had the highest sensitivity (100%) and specificity (97%) for cancer. Conclusion: The high specificity and sensitivity of the fibrinogen α-chain fragment suggest that it may be a clinical useful tumor marker.
UR - http://www.scopus.com/inward/record.url?scp=28044447188&partnerID=8YFLogxK
U2 - 10.1373/clinchem.2005.052324
DO - 10.1373/clinchem.2005.052324
M3 - 文章
C2 - 16239339
AN - SCOPUS:28044447188
SN - 0009-9147
VL - 51
SP - 2236
EP - 2244
JO - Clinical Chemistry
JF - Clinical Chemistry
IS - 12
ER -