TY - JOUR
T1 - Prenatal High-Fat Diet Combined with Microplastic Exposure Induces Liver Injury via Oxidative Stress in Male Pups
AU - Tiao, Mao Meng
AU - Sheen, Jiunn Ming
AU - Lin, I. Chun
AU - Khwepeya, Madalitso
AU - Yu, Hong Ren
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/8/30
Y1 - 2023/8/30
N2 - Prenatal high-fat diet (HFD) or exposure to microplastics can affect the accumulation of liver fat in offspring. We sought to determine the effects of maternal HFD intake and microplastic exposure on fatty liver injury through oxidative stress in pups. Pregnant female Sprague–Dawley rats were randomly divided into maternal HFD (experimental group) or normal control diet (NCD; control group) groups with or without microplastic exposure. As a result, the following groups were established: HFD-L (HFD + microplastics, 5 µm, 100 μg/L), HFD-H (HFD + microplastics, 5 µm, 1000 μg/L), NCD-L (NCD + microplastics, 5 µm, 100 μg/L), and NCD-H (NCD + microplastics, 5 µm, 1000 μg/L). The pups were sacrificed on postnatal day 7 (PD7). Liver histology revealed increased hepatic lipid accumulation in pups in the HFD-L and HFD-H groups compared to those in the HFD, NCD-L, NCD-H, and NCD groups on PD7. Similarly, liver TUNEL staining and cellular apoptosis were found to increase in pups in the HFD-L and HFD-H groups compared to those in the HFD, NCD-L, NCD-H, and NCD groups. The expression levels of malondialdehyde, a lipid peroxidation marker, were high in the HFD, HFD-L, and HFD-H groups; however, the highest expression was observed in the HFD-H group (p < 0.05). The levels of glutathione peroxidase, an antioxidant enzyme, decreased in the HFD, HFD-L, and HFD-H groups (p < 0.05). Overall, oxidative stress with cellular apoptosis plays a vital role in liver injury in offspring after maternal intake of HFD and exposure to microplastic; such findings may shed light on future therapeutic strategies.
AB - Prenatal high-fat diet (HFD) or exposure to microplastics can affect the accumulation of liver fat in offspring. We sought to determine the effects of maternal HFD intake and microplastic exposure on fatty liver injury through oxidative stress in pups. Pregnant female Sprague–Dawley rats were randomly divided into maternal HFD (experimental group) or normal control diet (NCD; control group) groups with or without microplastic exposure. As a result, the following groups were established: HFD-L (HFD + microplastics, 5 µm, 100 μg/L), HFD-H (HFD + microplastics, 5 µm, 1000 μg/L), NCD-L (NCD + microplastics, 5 µm, 100 μg/L), and NCD-H (NCD + microplastics, 5 µm, 1000 μg/L). The pups were sacrificed on postnatal day 7 (PD7). Liver histology revealed increased hepatic lipid accumulation in pups in the HFD-L and HFD-H groups compared to those in the HFD, NCD-L, NCD-H, and NCD groups on PD7. Similarly, liver TUNEL staining and cellular apoptosis were found to increase in pups in the HFD-L and HFD-H groups compared to those in the HFD, NCD-L, NCD-H, and NCD groups. The expression levels of malondialdehyde, a lipid peroxidation marker, were high in the HFD, HFD-L, and HFD-H groups; however, the highest expression was observed in the HFD-H group (p < 0.05). The levels of glutathione peroxidase, an antioxidant enzyme, decreased in the HFD, HFD-L, and HFD-H groups (p < 0.05). Overall, oxidative stress with cellular apoptosis plays a vital role in liver injury in offspring after maternal intake of HFD and exposure to microplastic; such findings may shed light on future therapeutic strategies.
KW - apoptosis
KW - maternal high-fat diet
KW - microplastics
KW - oxidative stress
KW - pups
KW - Oxidative Stress
KW - Liver
KW - Rats
KW - Male
KW - Diet, High-Fat/adverse effects
KW - Rats, Sprague-Dawley
KW - Vitamins
KW - Pregnancy
KW - Animals
KW - Noncommunicable Diseases
KW - Female
KW - Microplastics
KW - Plastics
UR - http://www.scopus.com/inward/record.url?scp=85170280207&partnerID=8YFLogxK
U2 - 10.3390/ijms241713457
DO - 10.3390/ijms241713457
M3 - 文章
C2 - 37686267
AN - SCOPUS:85170280207
SN - 1661-6596
VL - 24
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 17
M1 - 13457
ER -