摘要
Purpose: Resting-state functional MRI (rs-FMRI) has shown potential for presurgical mapping of eloquent cortex when a patient’s performance on task-based FMRI is compromised. The seed-based analysis is a practical approach for detecting rs-FMRI functional networks; however, seed localization remains challenging for presurgical language mapping. Therefore, we proposed a data-driven approach to guide seed localization for presurgical rs-FMRI language mapping. Methods: Twenty-six patients with brain tumors located in left perisylvian regions had undergone task-based FMRI and rs-FMRI before tumor resection. For the seed-based rs-FMRI language mapping, a seeding approach that integrates regional homogeneity and meta-analysis maps (RH+MA) was proposed to guide the seed localization. Canonical and task-based seeding approaches were used for comparison. The performance of the 3 seeding approaches was evaluated by calculating the Dice coefficients between each rs-FMRI language mapping result and the result from task-based FMRI. Results: With the RH+MA approach, selecting among the top 6 seed candidates resulted in the highest Dice coefficient for 81% of patients (21 of 26) and the top 9 seed candidates for 92% of patients (24 of 26). The RH+MA approach yielded rs-FMRI language mapping results that were in greater agreement with the results of task-based FMRI, with significantly higher Dice coefficients (P <.05) than that of canonical and task-based approaches within putative language regions. Conclusion: The proposed RH+MA approach outperformed the canonical and task-based seed localization for rs-FMRI language mapping. The results suggest that RH+MA is a robust and feasible method for seed-based functional connectivity mapping in clinical practice.
原文 | 英語 |
---|---|
頁(從 - 到) | 375-383 |
頁數 | 9 |
期刊 | Magnetic Resonance in Medicine |
卷 | 84 |
發行號 | 1 |
DOIs | |
出版狀態 | 已出版 - 01 07 2020 |
文獻附註
Publisher Copyright:© 2019 International Society for Magnetic Resonance in Medicine