Robust sequential detection algorithm for cardiac arrhythmia classification

Peter M. Clarkson*, Szi Wen Chen, Qi Fan

*此作品的通信作者

研究成果: 期刊稿件會議文章同行評審

3 引文 斯高帕斯(Scopus)

摘要

We describe a modified sequential probability ratio test (SPRT) for the discrimination of ventricular fibrillation (VF) from ventricular tachycardia (VT) in measured surface electrocardiograms. The algorithm uses a novel regularity measure dubbed blanking variability (BV) applied to threshold crossings from the measured ECG. Blanking variability corresponds to the normalized rate of change of cardiac rate as the blanking interval is varied. The algorithm has been trained and tested using separate subsets drawn from the MIT-BIH malignant arrhythmia database. BV values are modeled using a truncated Gaussian distribution, and parameter values are derived by averaging over the training component of the database. In testing, the algorithm achieved an overall classification accuracy of 95%.

原文英語
頁(從 - 到)1181-1184
頁數4
期刊ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
2
出版狀態已出版 - 1995
對外發佈
事件Proceedings of the 1995 20th International Conference on Acoustics, Speech, and Signal Processing. Part 2 (of 5) - Detroit, MI, USA
持續時間: 09 05 199512 05 1995

指紋

深入研究「Robust sequential detection algorithm for cardiac arrhythmia classification」主題。共同形成了獨特的指紋。

引用此